scholarly journals EVALUATING THE IMPACT OF TRIBUTARY DAM REMOVALS ON TIDAL WETLANDS WITHIN THE HUDSON RIVER ESTUARY

2018 ◽  
Author(s):  
Brian C. Yellen ◽  
◽  
David K. Ralston ◽  
Jonathan D. Woodruff ◽  
Sarah Fernald
2010 ◽  
pp. 279-295 ◽  
Author(s):  
Erik Kiviat ◽  
Stuart E. G. Findlay ◽  
W. Charles Nieder

1998 ◽  
Vol 34 (2-3) ◽  
pp. 214-222 ◽  
Author(s):  
M. G. Menon ◽  
R. J. Gibbs ◽  
A. Phillips

Author(s):  
David K. Ralston ◽  
Brian Yellen ◽  
Jonathan D. Woodruff

AbstractObservations and modeling are used to assess potential impacts of sediment releases due to dam removals on the Hudson River estuary. Watershed sediment loads are calculated based on sediment-discharge rating curves for gauges covering 80% of the watershed area. The annual average sediment load to the estuary is 1.2 Mt, of which about 0.6 Mt comes from side tributaries. Sediment yield varies inversely with watershed area, with regional trends that are consistent with substrate erodibility. Geophysical and sedimentological surveys in seven subwatersheds of the Lower Hudson were conducted to estimate the mass and composition of sediment trapped behind dams. Impoundments were classified as (1) active sediment traps, (2) run-of-river sites not actively trapping sediment, and (3) dammed natural lakes and spring-fed ponds. Based on this categorization and impoundment attributes from a dam inventory database, the total mass of impounded sediment in the Lower Hudson watershed is estimated as 4.9 ± 1.9 Mt. This represents about 4 years of annual watershed supply, which is small compared with some individual dam removals and is not practically available given current dam removal rates. More than half of dams impound drainage areas less than 1 km2, and play little role in downstream sediment supply. In modeling of a simulated dam removal, suspended sediment in the estuary increases modestly near the source during discharge events, but otherwise effects on suspended sediment are minimal. Fine-grained sediment deposits broadly along the estuary and coarser sediment deposits near the source, with transport distance inversely related to settling velocity.


<em>Abstract.</em>—Our objectives were to determine if striped bass <em>Morone saxatilis </em>larvae were present in the East River and if so, could they have come from the Hudson River. To meet the first objective, we examined entrainment data collected at the Charles Poletti Power Plant (Poletti) during the years 1999 through 2002. To meet the second objective, we examined the simulated release of 168,000 neutrally buoyant, passive particles in the lower Hudson River Estuary, using a particle-tracking model that was linked to an estuarine circulation model. We also compared the abundance of striped bass post-yolk-sac larvae (PYSL) collected in the East River at Poletti with the abundance of striped bass PYSL collected in the Battery region of the lower Hudson River Estuary and the abundance of striped bass PYSL in the Battery region with freshwater flow in the estuary. Striped bass PYSL were collected by entrainment sampling in the East River at Poletti every year from 1999 through 2002. The striped bass PYSL in the East River probably came from the Hudson River Estuary because the median probability that neutrally buoyant, passive particles would be transported from the lower Hudson River Estuary to the upper East River and western Long Island Sound was 0.12, with a median transport time of 2 d, and because the mean density of striped bass PYSL was highest at Poletti and in the Battery region during the same year. The abundance of striped bass PYSL in the Battery region was higher when freshwater flow during May and early June was higher.


2010 ◽  
pp. 189-204 ◽  
Author(s):  
Karin E. Limburg ◽  
Kathryn A. Hattala ◽  
Andrew W. Kahnle ◽  
John R. Waldman

2010 ◽  
pp. 51-64 ◽  
Author(s):  
Robin E. Bell ◽  
Roger D. Flood ◽  
Suzanne Carbotte ◽  
William B. F. Ryan ◽  
Cecilia McHugh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document