INTERPRETING COMPLEX DETRITAL ZIRCON SPECTRA FROM INTRACONTINENTAL FORELAND BASINS: AN EXAMPLE FROM THE ACTIVE TIAN SHAN, WESTERN CHINA

2018 ◽  
Author(s):  
Marius Vilkas ◽  
◽  
Richard V. Heermance ◽  
M. Robinson Cecil
2017 ◽  
Author(s):  
Richard V. Heermance ◽  
◽  
Jozi Pearson ◽  
Marius Vilkas ◽  
Annelisa Moe ◽  
...  

2015 ◽  
Vol 111 ◽  
pp. 395-413 ◽  
Author(s):  
Yingying Jia ◽  
Bihong Fu ◽  
Marc Jolivet ◽  
Shuo Zheng
Keyword(s):  

Author(s):  
Edward Derbyshire

High Asia, defined here as that great tract of land from the Himalaya- Karakoram in the south to the Tian Shan in the north and the Pamir in the west to the Qinling Mountains in the east, is a very dusty place. Whole communities of people in this region are exposed to the adverse effects of natural (aerosolic) dusts at exposure levels reaching those encountered in some high-risk industries. Outdooor workers are at particular risk. However, few data are available on the magnitude of the dust impact on human health. The effect of such far-travelled particles on the health of the human population in the Loess Plateau, and including major Chinese cities, has received relatively little attention to date. A combination of the highest known uplift rates, rapid river incision (up to 12 mm/yr: Burbank et al. 1996), unstable slopes, glaciation and widespread rock breakup by crystal growth during freezing (frost action), and by hydration of salts (salt weathering) makes the High Asia region the world’s most efficient producer of silty (defined as between 2 and 63 μm) debris. The earliest written records of the dust hazard come from China, most notably in the “Yu Gong” by Gu Ban (ca 200 BC) (Wang and Song 1983). Here, deposits of wind-blown silt (known as ‘loess’) cover the landscape in a drape that is locally 500 m thick. In North China, the loess covers an area of over 600,000 km², most of it in the Loess Plateau, situated in the middle reaches of the Huang He (Yellow River). The characteristic properties of loess include high porosity and collapsibility on wetting (Derbyshire et al. 1995, Derbyshire and Meng 2000).Thus, it is readily reworked and redistributed by water. This process concentrates silts in large alluvial fans (up to 50 x 50 km) in the piedmont zones of 6,000 m high glacier- and snow-covered mountain ranges of western China, including the Altai Shan (‘shan’ = mountains), Tian Shan, Kunlun Shan, Qilian Shan, and Karakoram. These zones are loci for human populations, and also a major source of wind-blown dust.


Phytotaxa ◽  
2019 ◽  
Vol 388 (3) ◽  
pp. 229
Author(s):  
DMITRY LYSKOV ◽  
EUGENE KLJUYKOV ◽  
ULIANA UKRAINSKAJA ◽  
KOMILJON TOJIBAEV

Hyalolaena zhang-minglii (Apiaceae) is described and illustrated as a new species from the Eastern Tian Shan, Narat Range, China. The species is related to H. issykkulensis but differs by filiform terminal segments of basal leaves, equal narrow-winged fruit ribs, short root, and greater number of secretory ducts on commissural side of mericarp. Hyalolaena depauperata is synonymized under H. jaxartica. Two species of Hyalolaena, namely H. bupleuroides and H. intermedia, are newly recorded for Uzbekistan.


2019 ◽  
Vol 38 (8) ◽  
pp. 597-603
Author(s):  
Yong Fang ◽  
Wenshan Luo ◽  
Xiaoxia Luo ◽  
Xukui Feng ◽  
Bo Zhao ◽  
...  

Due to complicated near-surface conditions, including large elevation changes and complex geologic structures, accurate imaging of subsurface structures for hydrocarbon exploration in the foreland basins of western China has been challenging for many years. After decades of research and fieldwork, we developed an effective seismic exploration workflow that uses the latest technologies from acquisition to imaging. They include 3D high-density and wide-azimuth (WAZ) acquisition, 3D true-surface tilted transverse isotropy (TTI) anisotropic prestack depth migration, and dual-detachment structural modeling and interpretation. To further reduce uncertainty in velocity model building and improve imaging quality, our geologists, geophysicists, and reservoir engineers worked closely through the exploration cycle (seismic acquisition, processing, and interpretation). This exploration model has been used successfully in hydrocarbon exploration of many complex foothill areas in western China. Three-dimensional WAZ high-density seismic surveys have been conducted over 40,000 km2 of the foreland basins, greatly improving the field seismic data quality. After application of 3D true-surface TTI anisotropic depth model building and imaging with integrated structural interpretation, new discoveries of hydrocarbon reservoirs have increased. The application of new technologies not only increased drilling success but also reduced depth well-tie errors between seismic data and wells.


2020 ◽  
Author(s):  
Yingying Jia ◽  
Christoph Glotzbach ◽  
Todd Ehlers ◽  
Lixing Lü

<p><span>The Pamir is an along-strike continuation of the Tibet-Himalaya orogen and penetrated ~300 km into the Tarim and Tajik basins in Cenozoic times. This northward indentation led to regional paleoenvironmental changes and facilitated northward transport of the far-field stress from the India-Asia plate boundary. Due to the compressional stress from the India-Asia boundary and Cenozoic lithosphere delamination, the Pamir underwent intense exhumations, which well recorded its Late Cenozoic mountain building processes. However, the very rapid Late Cenozoic exhumation also erased earlier cooling records and hinders a clear understanding of the Early Cenozoic tectonic evolution of Pamir. Thus, the onset and magnitude of the northward movement of Pamir are loosely constrained (Eocene-Late Oligocene) and long debated. In particular, the Early Cenozoic tectonic evolution of Pamir is unclear.</span></p><p><span>Provenance study of sediments in the adjacent sediment basins is a widely used method to reconstruct the tectonic-geomorphologic evolution of a mountain range. We carried out paleocurrent measurements and detrital zircon analysis of the Cretaceous-Pliocene sediments in the northern Pamir-Tian Shan convergence zone. Our study area, the Tierekesazi section, is located immediately south to the southern Tian Shan and is evolved in the present foreland basin of the southwestern Tian Shan. The provenance data show that the Tian Shan was the primary source area of the northwestern Tarim basin in the Cretaceous. The appearance of the Triassic-Jurassic detrital zircon grains and northward paleo-flow directions in the Eocene (~41 Ma) to Middle Miocene sediments suggest the Pamir became an important source area of the northwestern Tarim basin. Combining with the regional crustal shortening and paleoclimate data, we speculate that the northward indentation of the Pamir initiated before ~41 Ma. In contrast with the northward movement and Middle-Late Miocene accelerated exhumation of the Pamir, the source area of the studied section shifted back to the Tian Shan after the Middle Miocene. It consists with the Middle-Late Miocene uplift of the southwestern Tian Shan. Simultaneously, the crustal shortening of Pamir propagated to its northern foreland. Newly formed fold-and-thrust zones probably blocked the sediment transport from Pamir to the Tierekesazi section, and the present-day east flowing drainage system in the Pamir-Tian Shan convergence zone was established. We infer, in this period, the Pamir likely reached its present position, which is consistent with the appearance of an extreme arid climate in the Tarim basin.</span></p>


Sign in / Sign up

Export Citation Format

Share Document