Applying integrated seismic technology to complex foothill areas of foreland basins in China

2019 ◽  
Vol 38 (8) ◽  
pp. 597-603
Author(s):  
Yong Fang ◽  
Wenshan Luo ◽  
Xiaoxia Luo ◽  
Xukui Feng ◽  
Bo Zhao ◽  
...  

Due to complicated near-surface conditions, including large elevation changes and complex geologic structures, accurate imaging of subsurface structures for hydrocarbon exploration in the foreland basins of western China has been challenging for many years. After decades of research and fieldwork, we developed an effective seismic exploration workflow that uses the latest technologies from acquisition to imaging. They include 3D high-density and wide-azimuth (WAZ) acquisition, 3D true-surface tilted transverse isotropy (TTI) anisotropic prestack depth migration, and dual-detachment structural modeling and interpretation. To further reduce uncertainty in velocity model building and improve imaging quality, our geologists, geophysicists, and reservoir engineers worked closely through the exploration cycle (seismic acquisition, processing, and interpretation). This exploration model has been used successfully in hydrocarbon exploration of many complex foothill areas in western China. Three-dimensional WAZ high-density seismic surveys have been conducted over 40,000 km2 of the foreland basins, greatly improving the field seismic data quality. After application of 3D true-surface TTI anisotropic depth model building and imaging with integrated structural interpretation, new discoveries of hydrocarbon reservoirs have increased. The application of new technologies not only increased drilling success but also reduced depth well-tie errors between seismic data and wells.

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. A19-A24 ◽  
Author(s):  
Aleksander S. Serdyukov ◽  
Aleksander V. Yablokov ◽  
Anton A. Duchkov ◽  
Anton A. Azarov ◽  
Valery D. Baranov

We have addressed the problem of estimating surface-wave phase velocities through the spectral processing of seismic data. This is the key step of the well-known near-surface seismic exploration method, called multichannel analysis of surface waves. To increase the accuracy and ensure the unambiguity of the selection of dispersion curves, we have developed a new version of the frequency-wavenumber ([Formula: see text]-[Formula: see text]) transform based on the S-transform. We obtain the frequency-time representation of seismic data. We analyze the obtained S-transform frequency-time representation in a slant-stacking manner but use a spatial Fourier transform instead of amplitude stacking. Finally, we build the [Formula: see text]-[Formula: see text] image by analyzing the spatial spectra for different steering values of the surface-wave group velocities. The time localization of the surface-wave packet at each frequency increases the signal-to-noise ratio because of an exclusion of noise in other time steps (which does not fall in the effective width of the corresponding wavelet). The new [Formula: see text]-[Formula: see text] transform, i.e., the slant [Formula: see text]-[Formula: see text] (SFK) transform, renders a better spectral analysis than the conventional [Formula: see text]-[Formula: see text] transform and yields more accurate phase-velocity estimation, which is critical for the surface-wave analysis. The advantages of the SFK transform have been confirmed by synthetic- and field-data processing.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1332-1338 ◽  
Author(s):  
Gregory S. Baker ◽  
Don W. Steeples ◽  
Matt Drake

A 300-m near‐surface seismic reflection profile was collected in southeastern Kansas to locate a fault(s) associated with a recognized stratigraphic offset on either side of a region of unexposed bedrock. A substantial increase in the S/N ratio of the final stacked section was achieved by muting all data arriving in time after the airwave. Methods of applying traditional seismic data processing techniques to near‐surface data (200 ms of data or less) often differ notably from hydrocarbon exploration‐scale processing (3–4 s of data or more). The example of noise cone muting used is contrary to normal exploration‐scale seismic data processing philosophy, which is to include all data containing signal. The noise cone mute applied to the data removed more than one‐third of the total data volume, some of which contains signal. In this case, however, the severe muting resulted in a higher S/N ratio in the final stacked section, even though some signal could be identified within the muted data. This example supports the suggestion that nontraditional techniques sometimes need to be considered when processing near‐surface seismic data.


2014 ◽  
Vol 2 (1) ◽  
pp. SA93-SA97 ◽  
Author(s):  
Saleh Al-Dossary ◽  
Yuchun Eugene Wang ◽  
Mark McFarlane

The new seismic disorder attribute quantitatively describes the degree of randomness embedded in 3D poststack seismic data. We compute seismic disorder using a filter operation that removes simple structures including constant values, constant slopes, and steps in axial directions. We define the power of the filtered data as the seismic disorder attribute, which approximately represents data randomness. Seismic data irregularities are caused by a variety of reasons, including random reflection, diffraction, near-surface variations, and acquisition noise. Consequently, the spatial distribution of the seismic disorder attribute may help hydrocarbon exploration in several ways, including identifying geologic features such as fracture zones, gas chimneys, and terminated unconformities; indicating the signal-to-noise ratio to assess data quality; and providing a confidence index for reservoir simulation and engineering projects. We present three case studies and a comparison to other noise-estimation methods.


2019 ◽  
Vol 38 (1) ◽  
pp. 20-26
Author(s):  
Gareth Venfield ◽  
Michael Townsend ◽  
Paul Cattermole ◽  
Tony Martin ◽  
Stuart Fairhead

Evaluating, planning, and forecasting are integral parts of asset development and continue throughout the life cycle of a producing field. The right decisions are required to lower risk and maximize economic recovery in challenging environments. The Claymore Complex is located in the North Sea and was discovered in 1977. A number of geologic challenges affect the imaging and hence field development including a system of shallow interweaving Quaternary channels, numerous high-contrast layers of varying composition, overburden structural complexity, and a sequence of tilted fault blocks containing the main reservoir systems. Historically, seismic processing over the area has not fully solved these challenges, resulting in significant imaging uncertainty. The Claymore Complex has an abundance of data including a large population of well information and interpretation. As part of a data revitalization process, geostatistical integration of these auxiliary data into a velocity model building sequence using full-waveform inversion and wavelet shift tomography enabled the generation of an accurate high-resolution velocity model. Access to a recent 3D survey acquired obliquely to existing data improved subsurface illumination for both the model building and imaging phases. Near-surface imaging effects and their impact on reservoir positioning and clarity were improved using the upgraded velocity model and dual-azimuth data. Shallow imaging challenges were mitigated by utilizing the additional illumination and angular diversity contained within the multiple reverberations. The revitalization of the Claymore area seismic data has challenged the current understanding of the geologic framework. Confidence has been improved by solving depth conversion problems and increasing the understanding of fault positioning and reservoir connectivity, which are invaluable for future field development.


2019 ◽  
Vol 59 (2) ◽  
pp. 886
Author(s):  
Alexander Karvelas ◽  
Bee Jik Lim ◽  
Lianping Zhang ◽  
Haryo Trihutomo ◽  
Oliver Schenk ◽  
...  

Hydrocarbon exploration has resulted in the discovery of a variety of oil and gas accumulations mainly in Upper Jurassic and Lower Cretaceous intervals. However, the distribution of the different petroleum system elements including Jurassic and Triassic intervals is poorly determined, but required for improved understanding of the complex charge history, as indicated by the variety of hydrocarbon types encountered in the basin. The new WesternGeco multiclient 3D seismic survey extends to the edges of the basin to give a comprehensive picture. Raw hydrophone data were delivered from the vessel as acquisition progressed to begin the near-surface model building. The model building consisted of two major stages: first, using full waveform inversion (FWI) to derive the near-surface velocity field; and, second, common image point (CIP) tomography to update the deeper section beyond the FWI illumination zone. As illustrated herein, various stages of processing and imaging provided a cleaner and crisper dataset across the record length, allowing (1) detailed picking of the events within the entire Mesozoic (Cretaceous–Triassic) section allowing key events to be interpreted and correlated across the area and (2) accurate investigation of the complexity of different aged fault networks and their relationships across the full Exmouth Sub-basin for the first time. In summary, this survey provides a detailed insight into the deeper basin architecture of the Exmouth Sub-basin. The seamless volume imaged to depth allows accurate mapping which is critical to unravel the complex evolutionary history in a basin with proven and significant remaining hydrocarbon potential.


Author(s):  
А.А. Дробинский ◽  
О.А. Жуковская

В последние годы всё больше объектов сейсморазведочных работ относится к проблемным территориям, характеризующимся неблагоприятными поверхностными условиями и сложной геологической обстановкой. Получение качественных сейсмических изображений при обработке в таких случаях входит в число приоритетных направлений современной сейсморазведки. Одним из путей решения проблем ухудшения прослеживаемости сейсмических горизонтов в сложных условиях является оптимизированное суммирование общей средней точки (ОСТ), учитывающее качество входных сейсмических данных. Цель исследования. Настоящая работа посвящена созданию и тестированию гибкой, универсальной методики оптимизации суммирования ОСТ на конечной стадии полевой или камеральной обработки сейсмических данных метода отражённых волн общей глубинной точки (МОВ-ОГТ 2D/3D) для улучшения прослеживаемости отражающих горизонтов. При создании такой методики важным требованием являлась возможность реализации в существующем программном обеспечении (ПО), в том числе, отечественном. Методы исследования. Для исследования влияния сложных геологических объектов на распределение энергии в выборках ОСТ было выполнено построение иллюминационной модели по целевому горизонту, расположенному под эрозионным врезом. Оценка влияния рассеивающих аномалий верхней части разреза (ВЧР) проводилась с помощью двумерного лучевого моделирования с получение синтетических сейсмограмм ОПВ по горизонтально-слоистому модельному разрезу, содержащему участок палеокарста. Чтобы оценить потенциал применения предлагаемой методики были генерированы синтетические данные, содержащие сильные помехи различной природы, а также зону падения амплитуды полезного сигнала. По этим данным были разными способами получены и оценены суммарные трассы. Предлагаемая методика также была опробована на реальных данных метода общей глубинной точки (МОГТ-2D). Оценка результатов работы различных вариантов суммирования выполнялась визуально, а также количественно (с помощью атрибутного анализа). Результаты работы. Выполненное исследование показало недостаточную эффективность стандартного суммирования ОСТ для сложных сейсмических данных. Польза от применения существующих методик улучшения суммирования ОСТ очевидна, но они имеют недостатки: нарушение естественной динамики волновой картины, невозможность локального применения, необходимость реализации в специальном ПО. Предлагаемая авторами методика оптимизации суммирования даёт высокую гибкость и маневренность работы и позволяет справиться с вышеуказанными проблемами. Свободный выбор критериев взвешивания интервалов трасс на основе анализа пользовательского набора атрибутов открывает широкие возможности тонкой настройки процедуры, вводит интерпретационную составляющую в процесс оптимизации суммирования, делая его более осмысленным в геолого-геофизическом отношении. Предлагаемая методика не требует написания и опробования нового специального ПО и может быть реализована в уже имеющихся сейсмических пакетах, включая и российские программные комплексы Today increasingly more objects of prospecting seismology belong to problem areas characterized by unfavorable surface conditions and complex geological situation. Acquiring of high-quality seismic images by processing in these cases is a part of priority directions of modern prospecting seismology. One of the way to overcome the problem of seismic horizon traceability worsening in hard conditions is optimized CMP stacking, considering the quality of input seismic data. Aim. This work is devoted to generation and examination of flexible universal technique of optimized stacking on the last stage of field or final processing of 2D/3D reflection seismic data for seismic horizon traceability improvement. Creating this technique assumed important condition of embodiment ability in existing software (including Russian). Methods. Illumination model building was performed for target horizon, located beneath the erosive cut for studying of complex geological objects influence on energy distribution in CMP gathers. Scattering superficial anomalies influence was estimated by means of 2D ray tracing and synthetic shot records generation on horizontally layered model sectionconsisting near surface ancient karst spot. Synthetic data with different kinds of noise and signal amplitude decay zone war generated to appreciate implementation potential of introducing technique. Stacked traces were obtained and evaluated on this data with different methods. The introduced technique was tested on real 2D seismic data too. Evaluation of results of different kinds of stacking was performed by sight and with quantitative (attribute) analysis. Results. Performed research showed insufficient efficiency convenience CMP stacking for complex seismic data. The advantages of existing CMP stacking improvement methods are obvious but there are drawbacks too: natural wave field dynamic violation, disability of local implementation, need of special software development. Offered technique of stacking optimization gives high flexibility and mobility in work and allow overcoming the aforementioned problems. Easy choice of trace range weighting criteria based on customer attribute set analysis gives wide opportunities of fine-tuning for this procedure, bringing in interpretation term of stack optimization process and making it more sensible in geological-geophysical relation. This technique need not new software development and testing, it could be embodied in existing seismic software suites, including Russian complexes


2018 ◽  
Vol 23 (3) ◽  
pp. 369-376
Author(s):  
Jianping Liao ◽  
Songyuan Fu ◽  
Yungui Xu ◽  
Weibo Li ◽  
Jianxiong Chen ◽  
...  

For linear noise such as seismic ground roll, 3-D frequency-wavenumber-wavenumber (3-D FKK) domain filtering suppression is better than 2-D frequency-wavenumber (F-K) domain filtering. In recent years, with the continuous development of computer processing speed and memory capacity, high-density data acquisition in seismic exploration has been widely applied in the hydrocarbon industry, opening up the application of 3-D FKK filtering methods. We applied the 3-D FKK filtering software to a 3-D high-density onshore seismic field dataset from a coal mine in western China. The case study demonstrates that the linearity of the noise in the field data is better represented by constructing the single shot records as a minimum dataset. Both theoretical synthetic models and the 3-D high-density onshore seismic field data numerical filtering experiments demonstrate that the feasibility of 3-D FKK filtering.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. Q49-Q69
Author(s):  
Jixiang Xu ◽  
Shitai Dong ◽  
Huajuan Cui ◽  
Yan Zhang ◽  
Ying Hu ◽  
...  

Near-surface scattered waves (NSWs) are the main noise in seismic data in areas with a complex near surface and can be divided into surface-to-surface scattered waves and body-to-surface scattered waves. We have developed a method for NSW enhancement that uses modified source-receiver interferometry. The method consists of two parts. First, deconvolutional intersource interferometry is used to cancel the common raypath of seismic waves from a near-surface scatterer to the common receiver and the receiver function. Second, convolutional interreceiver interferometry is used to compensate the common raypath of seismic waves from the common source to the near-surface scatterer and the source function. For an isotropic point scatterer near the earth’s surface in modified source-receiver interferometry, a body-to-surface scattered wave can be reconstructed by constructive interference not only among three body-to-surface scattered waves but also among a body-to-surface scattered wave and two surface-to-surface scattered waves; a surface-to-surface scattered wave can be reconstructed by constructive interference not only among three surface-to-surface scattered waves but also among a surface-to-surface scattered wave and two body-to-surface scattered waves. According to stationary phase analysis based on the superposition principle, we have developed a so-called dual-wheel driving configuration of modified source-receiver interferometry for enhancing NSWs in the data of conventional seismic exploration. The main advantages of the scheme are that (1) it can be used to enhance NSWs without the need for any a priori knowledge of topography and near-surface velocity, (2) it can be used to reconstruct NSWs from real sources to real receivers, including 3D near-surface side-scattered waves, and (3) it can be applied to conventional seismic data with finite-frequency bandwidth, spatially limited and sparse arrays, different source and receiver functions, and static correction. Numerically simulated data and field seismic data are used to demonstrate the feasibility and effectiveness of the scheme.


2021 ◽  
Vol 40 (8) ◽  
pp. 584-589
Author(s):  
Tim Dean ◽  
Margarita Pavlova ◽  
Matthew Grant ◽  
Martin Bayly ◽  
Denis Sweeney ◽  
...  

Within the coal industry, there is a rich history of the use of the surface seismic method, principally for exploration and employing sparse 2D lines for broad resource delineation and structural modeling. However, the acquisition of 3D seismic surveys adjacent to open-cut mines (from which the majority of coal is extracted) for superior resource definition ahead of their expansion has been explored only recently. Although the reflection results are extremely useful and enable the mapping of faults with sub-5 m throws, there is still interest in determining if the seismic data can be used to image both structures and rock properties in the near surface. In addition to mapping near-surface structures that have geotechnical implications, the ability to map the overburden properties (which can be quite heterogeneous) is desired. Before mining activities can take place, the overburden needs to be removed. The cost of the removal method employed is directly affected by the depth of the weathered layer and rock properties. In particular, hardness can vary significantly. In this paper, we demonstrate how high-density seismic data originally acquired for reflection processing can be processed to generate high-resolution velocity (both VS and VP) depth volumes, which enable the successful identification of shallow structures and the creation of highly detailed near-surface rock-property volumes.


Sign in / Sign up

Export Citation Format

Share Document