SR ISOTOPE COMPOSITION OF MARBLES AND DETRITAL ZIRCON U-PB AGES FROM THE GUBONGSAN GROUP IN NORTHEASTERN GYEONGGI MASSIF, SOUTH KOREA: IMPLICATIONS ON NEOPROTEROZOIC CRUSTAL EVOLUTION OF THE SINO-KOREAN CRATON

2019 ◽  
Author(s):  
Kye-Hun Park ◽  
◽  
Youngji Ha ◽  
Yong-Sun Song
2003 ◽  
Vol 121 (1-2) ◽  
pp. 25-34 ◽  
Author(s):  
Seung Ryeol Lee ◽  
Moonsup Cho ◽  
Jae Ha Hwang ◽  
Byung-Joo Lee ◽  
Yoo-Bong Kim ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
K. Papapavlou ◽  
A. Moukhsil ◽  
A. Poirier ◽  
J.H.F.L. Davies

Abstract The detrital zircon perspective on the pre-collisional crustal evolution of the Grenville Province remains poorly explored. In this study, we conducted in situ laser ablation U–Pb–Hf isotopic microanalysis on detrital zircon grains from three pre-orogenic (>1 Ga) supracrustal sequences that crop out in the Central Grenville Province (Lac Saint-Jean region, QC, CA). Detrital zircon grains from vestiges of these sequences record three dominant age peaks at c. 1.46 Ga, 1.62 Ga, 1.85 Ga, and a subordinate peak at 2.7 Ga. The 1.46 Ga and 1.62 Ga age peaks are recorded in detrital zircon grains from a quartzite associated with a metavolcanic sequence (i.e. Montauban Group) with a maximum depositional age of c. 1.44 Ga. In contrast, the c.1.85 Ga age peak is observed from recycled zircon grains in metasediments with maximum depositional ages between 1.2 and 1.3 Ga. The suprachondritic Hf isotope composition in detrital zircon grains of the 1.46 Ga and 1.62 Ga age populations records juvenile crustal growth during peri-Laurentian accretionary orogenesis related to the Pinwarian (1.4–1.5 Ga) and Mazatzalian–Labradorian (1.6–1.7 Ga) events. The detrital zircon grains associated with Penokean–Makkovikian (1.8–1.9 Ga) source rocks record reworking of c. 2.7 Ga continental crust derived from a near-chondritic mantle reservoir. Overall, crust-forming and basement reworking events associated with accretionary orogenesis in southeastern Laurentia are retained in the detrital zircon load of Precambrian basins even after the terminal Grenvillian collision and assembly of Rodinia.


2018 ◽  
Author(s):  
Hangyu Liu ◽  
◽  
N. Ryan McKenzie ◽  
Andrew J. Smye ◽  
Daniel F. Stockli

2006 ◽  
Vol 152 (5) ◽  
pp. 571-589 ◽  
Author(s):  
Friedrich Lucassen ◽  
Wolfgang Kramer ◽  
Viola Bartsch ◽  
Hans-Gerhard Wilke ◽  
Gerhard Franz ◽  
...  

2011 ◽  
Vol 119 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Peter J. Voice ◽  
Michal Kowalewski ◽  
Kenneth A. Eriksson

2021 ◽  
Vol 62 (4) ◽  
pp. 415-426
Author(s):  
E.I. Lastochkin ◽  
G.S. Ripp ◽  
D.S. Tsydenova ◽  
V.F. Posokhov ◽  
A.E. Murzintseva

Abstract —We consider the isotope-geochemical features of epithermal fluorite deposits in Transbaikalia, including the REE compositions, Sr isotope ratios, Sm–Nd systems, and isotope compositions of oxygen, carbon, hydrogen, and sulfur. The 87Sr/86Sr ratios in fluorites are within 0.706–0.708, and the εNd values are negative. Oxygen in quartz, the main mineral of the deposits, has a light isotope composition (δ18O = –3.4 to +2.6‰), and the calculated isotope composition of oxygen in the fluid in equilibrium with quartz (δ18O = –9 to –16‰) indicates the presence of meteoric water. The latter is confirmed by analysis of the isotope compositions of oxygen and hydrogen in gas–liquid inclusions in fluorites from three deposits. These isotope compositions are due to recycling caused by the impact of shallow basic plutons. The isotope composition of sulfur indicates its deep source. During ascent, sulfur became enriched in its light isotope (δ34S = –1.8 to –7.7‰). We assess the association of fluorite ores with basaltoids widespread in the study area. The isotope and geochemical parameters suggest their spatial proximity. Probably, the basaltoids were responsible for the recycling of meteoric water. It is shown that the epithermal fluorite deposits formed by the same mechanism as fissure–vein thermal waters in western Transbaikalia.


Sign in / Sign up

Export Citation Format

Share Document