OBJECTIVE CLASSIFICATION OF FRACTIONAL CRYSTALLIZATION, ASSIMILATION AND RECHARGE SIGNATURES IN MULTIDIMENSIONAL WHOLE ROCK GEOCHEMICAL DATA

2020 ◽  
Author(s):  
Rachel Lynn Hampton ◽  
◽  
Leif Karlstrom
2019 ◽  
Vol 60 (5) ◽  
pp. 907-944 ◽  
Author(s):  
Jacqueline Vander Auwera ◽  
Olivier Namur ◽  
Adeline Dutrieux ◽  
Camilla Maya Wilkinson ◽  
Morgan Ganerød ◽  
...  

Abstract Where and how arc magmas are generated and differentiated are still debated and these questions are investigated in the context of part of the Andean arc (Chilean Southern Volcanic Zone) where the continental crust is thin. Results are presented for the La Picada stratovolcano (41°S) that belongs to the Central Southern Volcanic Zone (CSVZ) (38°S–41·5°S, Chile) which results from the subduction of the Nazca plate beneath the western margin of the South American continent. Forty-seven representative samples collected from different units of the volcano define a differentiation trend from basalt to basaltic andesite and dacite (50·9 to 65·6 wt % SiO2). This trend straddles the tholeiitic and calc-alkaline fields and displays a conspicuous compositional Daly Gap between 57·0 and 62·7 wt % SiO2. Interstitial, mostly dacitic, glass pockets extend the trend to 76·0 wt % SiO2. Mineral compositions and geochemical data indicate that differentiation from the basaltic parent magmas to the dacites occurred in the upper crust (∼0·2 GPa) with no sign of an intermediate fractionation stage in the lower crust. However, we have currently no precise constraint on the depth of differentiation from the primary magmas to the basaltic parent magmas. Stalling of the basaltic parent magmas in the upper crust could have been controlled by the occurrence of a major crustal discontinuity, by vapor saturation that induced volatile exsolution resulting in an increase of melt viscosity, or by both processes acting concomitantly. The observed Daly Gap thus results from upper crustal magmatic processes. Samples from both sides of the Daly Gap show contrasting textures: basalts and basaltic andesites, found as lavas, are rich in macrocrysts, whereas dacites, only observed in crosscutting dykes, are very poor in macrocrysts. Moreover, modelling of the fractional crystallization process indicates a total fractionation of 43% to reach the most evolved basaltic andesites. The Daly Gap is thus interpreted as resulting from critical crystallinity that was reached in the basaltic andesites within the main storage region, precluding eruption of more evolved lavas. Some interstitial dacitic melt was extracted from the crystal mush and emplaced as dykes, possibly connected to small dacitic domes, now eroded away. In addition to the overall differentiation trend, the basalts to basaltic andesites display variable MgO, Cr and Ni contents at a given SiO2. Crystal accumulation and high pressure fractionation fail to predict this geochemical variability which is interpreted as resulting from variable extents of fractional crystallization. Geothermobarometry using recalculated primary magmas indicates last equilibration at about 1·3–1·5 GPa and at a temperature higher than the anhydrous peridotite solidus, pointing to a potential role of decompression melting. However, because the basalts are enriched in slab components and H2O compared to N-MORB, wet melting is highly likely.


1987 ◽  
Vol 57 (6) ◽  
pp. 1-1 ◽  
Author(s):  
S. Warren ◽  
H. A. Hamalainen ◽  
E. P. Gardner

S. Warren, H. A. Hamalainen, and E. P. Gardner, “Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys.” It was incorrectly stated that Orban and co-workers(J. Neurophysiol. 45: 1059–1073, 1981) attributed direction selectivity to cortical neurons having a direction index (DI) ge 20. Orban et al. actually used a weighted average of DIs and defined cells with a mean DI (MDI) above 50 as direction selective. Their criterion for direction selectivity was stricter and not less stringent, as stated in the paper. This error does not alter any of the data or conclusions of Warren et al.


2014 ◽  
Vol 513-517 ◽  
pp. 1540-1544
Author(s):  
Li Hua Zhang ◽  
Wei Liu

Today's society is a society of information explosion, the popularity of the Internet and development bring a lot of convenience to people, people can easily get a lot of information on the network, however, facing so many information, people prone to the problems of "information overload" and "resources disorientation. Therefore, the recommended system came into being, the recommendation system can provide people with the most in need and most concern to avoid the time of the search and comparison. This article intends to use the very mature recommendation system in the field of electronic commerce to distance education system and promotes personalized learning, shifting the traditional "what teachers teach, what students receive" to "what the students need, what the system provides, which is consistent of constructivism study philosophy. The analysis of users interested as the basis of the recommendation system, users clustering is very important, the objective classification of fuzzy clustering analysis can recommend for users to enjoy high-quality service.


1999 ◽  
Vol 36 (5) ◽  
pp. 819-831 ◽  
Author(s):  
J B Thomas ◽  
A K Sinha

The quartz dioritic Quottoon Igneous Complex (QIC) is a major Paleogene (65-56 Ma) magmatic body in northwestern British Columbia and southeastern Alaska that was emplaced along the Coast shear zone. The QIC contains two different igneous suites that provide information about source regions and magmatic processes. Heterogeneous suite I rocks (e.g., along Steamer Passage) have a pervasive solid-state fabric, abundant mafic enclaves and late-stage dikes, metasedimentary screens, and variable color indices (25-50). The homogeneous suite II rocks (e.g., along Quottoon Inlet) have a weak fabric developed in the magmatic state (aligned feldspars, melt-filled shears) and more uniform color indices (24-34) than in suite I. Suite I rocks have Sr concentrations <750 ppm, average LaN/YbN = 10.4, and initial 87Sr/86Sr ratios that range from 0.70513 to 0.70717. The suite II rocks have Sr concentrations >750 ppm, average LaN/YbN = 23, and initial 87Sr/86Sr ratios that range from 0.70617 to 0.70686. This study suggests that the parental QIC magma (initial 87Sr/86Sr approximately 0.706) can be derived by partial melting of an amphibolitic source reservoir at lower crustal conditions. Geochemical data (Rb, Sr, Ba, and LaN/YbN) and initial 87Sr/86Sr ratios preclude linkages between the two suites by fractional crystallization or assimilation and fractional crystallization processes. The suite I rocks are interpreted to be the result of magma mixing between the QIC parental magma and a mantle-derived magma. The suite II rocks are a result of assimilation and fractional crystallization processes.


1987 ◽  
Vol 57 (1) ◽  
pp. 1-1
Author(s):  
S. Warren ◽  
H. A. Hamalainen ◽  
E. P. Gardner

S. Warren, H. A. Hamalainen, and E. P. Gardner, “Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys.” It was incorrectly stated that Orban and co-workers ( J. Neurophysiol. 45: 1059–1073, 1981) attributed direction selectivity to cortical neurons having a direction index (DI)≥20. Orban et al. actually used a weighted average of DIs and defined cells with a mean DI (MDI) above 50 as direction selective. Their criterion for direction selectivity was stricter and not less stringent, as stated in the paper. This error does not alter any of the data or conclusions of Warren et al.


Sign in / Sign up

Export Citation Format

Share Document