DIGGING DEEPER: PERSISTENCE AND CLIMATE SENSITIVITY OF DEEP SOIL ORGANIC MATTER

2020 ◽  
Author(s):  
Asmeret Berhe ◽  
2015 ◽  
Vol 12 (16) ◽  
pp. 5041-5059 ◽  
Author(s):  
G. Saiz ◽  
M. Bird ◽  
C. Wurster ◽  
C. A. Quesada ◽  
P. Ascough ◽  
...  

Abstract. Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ13C and sand content explaining 0.63 of the observed variability. The variation of δ13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in δ13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.


2010 ◽  
Vol 338 (1-2) ◽  
pp. 143-158 ◽  
Author(s):  
Cornelia Rumpel ◽  
Ingrid Kögel-Knabner

2008 ◽  
Vol 5 (1) ◽  
pp. 163-190 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify appropriate and inappropriate formulations.


2021 ◽  
Author(s):  
Emanuele Lugato ◽  
Jocelyn M. Lavallee ◽  
Michelle L. Haddix ◽  
Panos Panagos ◽  
M. Francesca Cotrufo

2008 ◽  
Vol 5 (3) ◽  
pp. 749-759 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify formulations that are more or less suitable to represent the most important drivers of long term carbon storage.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1268
Author(s):  
Nikita Mergelov ◽  
Dmitry Petrov ◽  
Elya Zazovskaya ◽  
Andrey Dolgikh ◽  
Alexandra Golyeva ◽  
...  

Despite the abundance of charcoal material entrapped in soils, they remain relatively less studied pyrogenic archives in comparison to the sedimentary paleofire records (e.g., lacustrine and peat deposits), and that is especially the case in most of Russia’s territory. We report here on the deep soil archives of the Holocene forest fires from the Pinega District of the Arkhangelsk region (64.747° N, 43.387° E). Series of buried soil profiles separated by charcoal layers and clusters were revealed in specific geomorphological traps represented by the active and paleokarst subsidence sinkholes on sulfate rocks overlaid by glacial and fluvial deposits. We combine the study of soil morphology and stratigraphy with a set of radiocarbon data on charcoal and soil organic matter, as well as the anthracomass analysis, to extract a set of paleoenvironmental data. A total of 45 radiocarbon dates were obtained for the macrocharcoal material and the soil organic matter. The maximum temporal “depth” of archives estimated from the radiocarbon dating of macrocharcoal reached 10,260 ± 35 cal yr BP. Soil formation with Podzols established at the inter-pyrogenic stages repeatedly reproduced within the period of ten thousand years, while the dominant tree species was Pinus sp. According to the macrocharcoal data, the intervals between fires have shortened in the last thousand years. Dendrochronological estimates suggest the occurrence of fires in almost every decade of the 20th and early 21st centuries. This is the first study of the millennia-scale soil record of forest fires in this particular region of Russia.


Soil Research ◽  
2019 ◽  
Vol 57 (7) ◽  
pp. 712
Author(s):  
J. L. R. Torres ◽  
J. C. Mazetto Júnior ◽  
J. Silva Júnior ◽  
D. M. S. Vieira ◽  
Z. M. Souza ◽  
...  

Soil management has a major effect on soil physical characteristics, and consequently on soil organic matter (SOM) content, which are important for the success of crop production. The aim of this study was to evaluate the soil physical attributes and the accumulation of SOM in no-tillage systems (NTS) with different periods of implantation in a conventional tillage area and to compare them with native forest (NF) in the Cerrado biome. The experiment was planned in a 3 × 4 factorial scheme, consisting of three soil treatments (NTS for 17 years (NTS17), NTS for 5 years (NTS5) and NF) and four soil depths (0–0.1, 0.1–0.2, 0.2–0.3 and 0.3–0.4 m), with a completely randomised design and four replicates. At deep soil layers (0.2–0.4 m) the NTS17 area had a greater soil density than the NTS5 and NF areas, and greater SOM compared with the NTS5 area. Soil macroporosity in the NTS5 area was below 10% at all soil depths evaluated. The NF area had the greatest total organic carbon content (1.39 dag kg–1), stock of carbon (16.63 Mg ha--1), amount of soil organic matter (28.66 Mg ha--1) and equivalent carbon credits (60.96 Mg ha–1). Carbon stocks were similar in the NTS areas in all soil depths evaluated. The results indicate that conventional tillage areas can be successfully recovered under the Cerrado edaphoclimatic conditions with the implantation of an NTS.


2020 ◽  
Author(s):  
Julien Guigue ◽  
Christopher Just ◽  
Siwei Luo ◽  
Eleanor Hobley ◽  
Ingrid Kögel-Knabner

<p><span>While the demographic pressure for food demand is continuously rising, global environmental changes are threatening the productivity of agroecosystems. Climatic events like floods or droughts, and long-term decrease in soil organic matter stocks due to intensive agriculture are examples pointing to the necessity to find solutions for sustainable performance of agroecosystems.</span></p><p><span>Significant amounts of water and nutrients are stored in deep soil horizons, and thus subsoil management is being considered as an alternative to sustain high demand in crop productivity. </span></p><p><span>We used samples from an ongoing field experiment in Germany where the agricultural management was adapted to investigate the potential benefits of deep ploughing with OM incorporation. We recorded hyperspectral images of soil cores (depth = 1 m) using Vis-NIR reflectance spectroscopy and the C distribution within the soil was modeled at a very high spatial resolution (53×53 μm). The SOC mapping revealed an increase in SOC stocks resulting from deep ploughing, and the high resolution images generated allows the observation of OM distribution in the subsoil and the response in SOM stocks to different types of organic matter incorporation (compost vs green manure). The same imaging technique was also combined with solid-state <sup>13</sup>C NMR measurements to track the molecular composition of the organic amendment during decomposition.</span></p><p><span>Hyperspectral imaging of soil cores allows the quantification of OM stocks and changes at the pedon scale, and fine scale resolution of heterogeneity in the spatial distribution of soil organic matter is helping to understand and quantify the processes related to changes in soil C stocks in subsoils.</span></p>


Sign in / Sign up

Export Citation Format

Share Document