HYDRAULIC CONDUCTIVITY OF SUBSOILS VIS-À-VIS FOUNDATION APPLICATIONS IN AKURE, SOUTHWESTERN NIGERIA

2020 ◽  
Author(s):  
Odunyemi Anthony Ademeso ◽  
◽  
Ololade Stephen Ogunjobi
2014 ◽  
Vol 11 ◽  
pp. 30-39 ◽  
Author(s):  
J.O. Fatoba ◽  
S.D. Omolayo ◽  
E.O. Adigun

Electrical resistivity investigation was carried out at Ibeju Lekki, Southwestern Nigeria. The thrust of this study is to determine the geoelectrical parameters of the shallow aquifer and estimate the hydraulic characteristics of this aquifer unit from the surface geophysics. The area falls within the Dahomey basin of the Nigeria sedimentary terrain. Twenty-one VES were conducted using Shlumberger array with a maximum half current electrode (AB/2) of 100 m giving total spread of 200 m. Data were interpreted using partial curve matching technique and assisted 1-D forward modeling with WINRESIST software. The qualitative interpretation revealed KQ curves (ρ1 < ρ2 > ρ3 > ρ4) and KH curve (ρ1 < ρ2 > ρ3 < ρ4). The geoelectric section generated from the results of the VES revealed a four geo-electric layers; these include topsoil with resistivity ranging from 213-5404 Ωm, dry sand with resistivity values vary from 301to 17178 Ωm, saturated sand with resistivity varying from 110 to1724 Ωm and sand (saline water content) with resistivity values of between 8 and 97 Ωm. The major aquifer in the area occurs at the third geoelectric layer. The depth to this aquifer is of between 0.7m and 6.0m and the layer thickness is between 0.2 m and 19.9 m. The hydraulic characteristics of the aquifer estimated from the geoelectric parameters reveal that the aquifer has porosity values of between 29.4 % and 57.7 %, protective capacities of between 0.00013 and 0.015 mhos, transverse resistance ranges from 345-18502 Ωm2, transmissivity values vary from 13 to 310 m2/day and hydraulic conductivity ranges from 0.8-65 m/day. The results show that the aquifer is characterized by high porosity and low protective capacities of overburden layers indicating that it is highly vulnerable to surface contamination. It has high transverse resistance, high transmissivity, and high hydraulic conductivity indicating that the aquifer can transmit water at higher rate and sustain the need of the community. This study has demonstrated the efficacy of surface geophysics in estimating hydraulic characteristics of an aquifer where pumping test data are not available and also to determine its vulnerability to surface contaminants.


Author(s):  
A. D. Adebiyi ◽  
S. O. Ilugbo ◽  
O. E. Bamidele ◽  
T. Egunjobi

This study is aimed at evaluating of aquifer vulnerability in a typical basement complex environment of Akure industrial estate, Akure, Southwestern Nigeria. A multi-criteria model is developed for achieving this aim; the vulnerability model which is based on topsoil resistivity, longitudinal conductance, thickness of layer overlying aquifer, and hydraulic conductivity of each sounding point across the study area is successfully used to evaluate the aquifer vulnerability of the area for future groundwater development programme in the area. Geophysical investigation involving vertical electrical sounding is carried out across the study area. A total of thirty one (31) vertical electrical soundings (VES) data were acquired using Schlumberger array with maximum half-current electrode separation of 100 m. Three to five geoelectric layers were delineated across the study area. The curve types obtained are the A, H, K, KH, HA, AA, QHA and KHA.The map of topsoil resistivity, longitudinal conductance, thickness of layer overlying aquifer, and hydraulic conductivity were generated and synthesized to producing the vulnerability map. The vulnerability map shows that the area is characterized by five zones; very low, low, moderate, high and very high. The mid-western, southeastern and closure at the northern part of the study area are delineated to be very low to low vulnerable zones, followed by the eastern and part of the western and central part of the study area which are categorized as moderate vulnerable zones, and finally the southern and northern part of the study area which are characterized by high and very high vulnerable zone.


Sign in / Sign up

Export Citation Format

Share Document