USE OF ANISOTROPY OF MAGNETIC SUSCEPTIBILITY (AMS) MEASUREMENTS FOR OROGENIC STUDIES: EXAMPLES FROM THE BETIC CORDILLERA, SPAIN AND CENTRAL APENNINES, ITALY

2020 ◽  
Author(s):  
David J. Anastasio ◽  
◽  
Josep M. Pares ◽  
Frank J. Pazzaglia ◽  
Kenneth P. Kodama ◽  
...  
1997 ◽  
Vol 40 (6) ◽  
Author(s):  
L. Alfonsi

In the last few years paleomagnetic investigations within the Apennine chain have revealed that the area is characterized by a complex pattern of deformation, not linkable to a simple and homogeneous process. In order to estimate the amount, sense and timing of vertical axis rotations within the Central Apennines, Neogene continental basins have been investigated for paleomagnetic studies. The paleomagnetic results obtained in the Plio-Pleistocene Todi basin showed that the Upper Pliocene-Lower Pleistocene evolution, associated with major dip-slip tectonics, has not involved vertical axis rotation since that time. The Anisotropy of Magnetic Susceptibility analysis (AMS), carried out on the same samples treated for paleomagnetic determination, revealed the presence of two groups of specimens characterized by different magnetic lineation directions. One direction trends NE-SW and is parallel to the orientation of the regional extension stress typical of the area. This direction is observed throughout the northern basin. The other, restricted to the southern basin, trends N-S and shows no links with the tectonic, hydrological-sedimentary conditions of the area. The results of the AMS analysis will be presented and discussed in the light of the rock magnetic results and the tectonic framework of the area.


Solid Earth ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 1125-1142
Author(s):  
David J. Anastasio ◽  
Frank J. Pazzaglia ◽  
Josep M. Parés ◽  
Kenneth P. Kodama ◽  
Claudio Berti ◽  
...  

Abstract. The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to measure fabrics and, in the process, interpret the kinematics of actively deforming orogens. We collected rock fabric data of alluvial fan sediments surrounding the Sierra Nevada massif, Spain, and a broader range of Cenozoic sediments and rocks across the Northern Apennine foreland, Italy, to explore the deformation fabrics that contribute to the ongoing discussions of orogenic kinematics. The Sierra Nevada is a regional massif in the hinterland of the Betic Cordillera. We recovered nearly identical kinematics regardless of specimen magnetic mineralogy, structural position, crustal depth, or time. The principal elongation axes are NE–SW in agreement with mineral lineations, regional GPS geodesy, and seismicity results. The axes trends are consistent with the convergence history of the Africa–Eurasia plate boundary. In Italy, we measured AMS fabrics of specimens collected along a NE–SW corridor spanning the transition from crustal shortening to extension in the Northern Apennines. Samples have AMS fabrics compatible only with shortening in the Apennine wedge and have locked in penetrative contractional fabrics, even for those samples that were translated into the actively extending domain. In both regions, we found that specimens have a low degree of anisotropy and oblate susceptibility ellipsoids that are consistent with tectonic deformation superposed on compaction fabrics. Collectively, these studies demonstrate the novel ways that AMS can be combined with structural, seismic, and GPS geodetic data to resolve orogenic kinematics in space and time.


2021 ◽  
Author(s):  
David J. Anastasio ◽  
Frank J. Pazzaglia ◽  
Josep M. Parés ◽  
Kenneth P. Kodama ◽  
Claudio Berti ◽  
...  

Abstract. The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to measure fabrics and in the process, interpret the kinematics of actively deforming orogens. We collected rock fabric data of alluvial fan sediments surrounding the Sierra Nevada massif, Spain, and a broader range of Cenozoic sediments and rocks across the northern Apennine foreland, Italy, to explore the deformation fabrics that contribute to the ongoing discussions of orogenic kinematics. Sierra Nevada is a regional massif in the hinterland of the Betic Cordillera. We recovered nearly identical kinematics regardless of specimen magnetic minerology, structural position, crustal depth, or time. The principal elongation axes are NE-SW in agreement with mineral lineations, regional GPS geodesy, and seismicity results. The axes trends are consistent with the convergence history of the Africa-Eurasia plate boundary. In Italy, we measured AMS fabrics of specimens collected along a NE-SW corridor spanning the transition from crustal shortening to extension in the northern Apennines. Samples have AMS fabrics compatible only with shortening in the Apennine wedge and have locked in penetrative contractional fabrics, even for those samples that were translated into the actively extending domain. In both regions we found that specimens have a low degree of anisotropy and oblate susceptibility ellipsoids that are consistent with tectonic deformation superposed on compaction fabrics. Collectively, these studies demonstrate the novel ways that AMS can be combined with structural, seismic, and GPS geodetic data to resolve orogenic kinematics in space and time.


2021 ◽  
Author(s):  
Sandra B. Ramírez-García ◽  
Luis M. Alva-Valdivia

<p>Magnetite formation of serpentinized ultramafic rocks leads to variations in the magnetic properties of serpentinites; however, magnetite precipitation is still on debate.</p><p>In this work, we analyzed 60 cores of ultramafic rocks with a variety of serpentinization degrees. These rocks belong to the ultramafic-mafic San Juan de Otates complex in Guanajuato, Mexico. Geochemical studies have been previously conducted, enabling us to compare changes in the magnetic properties against the chemical variations generated by the serpentinization process. By studying the density and magnetic properties such as anisotropy of magnetic susceptibility, hysteresis curves as well as magnetic and temperature-dependent susceptibility and, we were able to identify the relationship between magnetic content and serpentinization degree, the predominant magnetic carrier, and to what extent the magnetite grain size depends on the serpentinization.  Variations in these parameters allowed us to better constrain the temperature at which serpentinization occurred, the generation of other Fe-rich phases such as Fe-brucite and/or Fe-rich serpentine as well as distinctive rock textures formed at different serpentinization degrees.</p>


1963 ◽  
Vol 68 (1) ◽  
pp. 279-291 ◽  
Author(s):  
S. Uyeda ◽  
M. D. Fuller ◽  
J. C. Belshé ◽  
R. W. Girdler

2018 ◽  
Vol 216 (2) ◽  
pp. 1043-1061 ◽  
Author(s):  
Teresa Román-Berdiel ◽  
Antonio M Casas-Sainz ◽  
Belén Oliva-Urcia ◽  
Pablo Calvín ◽  
Juan José Villalaín

Sign in / Sign up

Export Citation Format

Share Document