Guadalupian (Permian) onset of subduction zone volcanism and geodynamic turnover from passive- to active-margin tectonics in southeast China

2019 ◽  
Vol 132 (1-2) ◽  
pp. 130-148 ◽  
Author(s):  
Feng-Qi Zhang ◽  
Hong-Xiang Wu ◽  
Yildirim Dilek ◽  
Wei Zhang ◽  
Kong-Yang Zhu ◽  
...  

Abstract New stratigraphic, geochemical, and geochronological data from the late Paleozoic depositional record in Anhui Province, China, signal the onset of active-margin magmatism in East Asia. Chert-shale sequences of the Gufeng Formation are part of a Carboniferous–Permian carbonate platform that developed along the passive margin of the South China block. Thin tuffaceous interlayers in these sequences represent distal ash deposits, marking discrete volcanic events. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon dating of the stratigraphically bottom and near-top tuffaceous interlayers has revealed crystallization ages of 270 Ma and 264 Ma, respectively, constraining the time span of subaerial eruptions to ∼6 m.y. during the Guadalupian Epoch. High SiO2 and Al2O3 contents, enrichments in large ion lithophile and light rare earth elements, and depletion patterns of high field strength and heavy rare earth elements indicate a calc-alkaline magma source in an arc setting for the origin of these volcanic tuff deposits. Detrital zircon geochronology of sandstones in the overlying Longtan Formation shows two prominent age populations of 290–250 Ma and 1910–1800 Ma. The former age cluster overlaps with the tightly constrained zircon ages obtained from the Gufeng Formation. The latter age group is compatible with the known magmatic-metamorphic ages from Cathaysia in the South China block, and it points to the existence of a NE-SW–trending topographic high as a major sediment source. We interpret this topographic high and silicic volcanism to represent an Andean-type active margin, developed above a north-dipping paleo-Pacific slab. Our tightly constrained Guadalupian eruption ages indicate the inception of magmatic arc construction and mark a major switch from passive- to active-margin tectonics along SE Asia.

2022 ◽  
Vol 9 ◽  
Author(s):  
Wu Wei ◽  
Chuan-Zhou Liu ◽  
Ross N. Mitchell ◽  
Wen Yan

Triassic volcanic rocks, including basalts and dacites, were drilled from Meiji Atoll in the South China Sea (SCS), which represents a rifted slice from the active continental margin along the Cathaysia Block. In this study, we present apatite and whole rock geochemistry of Meiji dacites to decipher their petrogenesis. Apatite geochronology yielded U-Pb ages of 204–221 Ma, which are identical to zircon U-Pb ages within uncertainty and thus corroborate the formation of the Meiji volcanic rocks during the Late Triassic. Whole rock major elements suggest that Meiji dacites mainly belong to the high-K calc-alkaline series. They display enriched patterns in light rare earth elements (LREE) and flat patterns in heavy rare earth elements (HREE). They show enrichment in large-ion lithophile elements (LILE) and negative anomalies in Eu, Sr, P, Nb, Ta, and Ti. The dacites have initial 87Sr/86Sr ratios of 0.7094–0.7113, εNd(t) values of -5.9–-5.4 and εHf(t) values of -2.9–-1.7, whereas the apatite has relatively higher initial 87Sr/86Sr ratios (0.71289–0.71968) and similar εNd(t) (-8.13–-4.56) values. The dacites have homogeneous Pb isotopes, with initial 206Pb/204Pb of 18.73–18.87, 207Pb/204Pb of 15.75–15.80, and 208Pb/204Pb of 38.97–39.17. Modeling results suggest that Meiji dacites can be generated by <40% partial melting of amphibolites containing ∼10% garnet. Therefore, we propose that the Meiji dacites were produced by partial melting of the lower continental crust beneath the South China block, triggered by the underplating of mafic magmas as a response to Paleo-Pacific (Panthalassa) subduction during the Triassic. Meiji Atoll, together with other microblocks in the SCS, were rifted from the South China block and drifted southward due to continental extension and the opening of the SCS.


2018 ◽  
Vol 37 (7) ◽  
pp. 41-54 ◽  
Author(s):  
Yi Zhong ◽  
Zhong Chen ◽  
Francisco Javier Gonzalez ◽  
Xufeng Zheng ◽  
Gang Li ◽  
...  

2017 ◽  
Vol 155 (6) ◽  
pp. 1263-1276 ◽  
Author(s):  
XIAO-FEI QIU ◽  
XIAO-MING ZHAO ◽  
HONG-MEI YANG ◽  
SHAN-SONG LU ◽  
NIAN-WEN WU ◽  
...  

AbstractPalaeoproterozic metasedimentary rocks, also referred to as khondalites, characterized by Al-rich minerals, are extensively exposed in the nucleus of the Yangtze craton, South China block. Samples of garnet–sillimanite gneiss in the khondalite suite were collected from the Kongling complex for Nd isotopic and elemental geochemical study. These rocks are characterized by variable SiO2 contents ranging from 35.71 to 58.07 wt%, and have low CaO (0.45–0.84 wt%) but high Al2O3 (18.56–29.04 wt%), Cr (174–334 ppm) and Ni (42.5–153 ppm) contents. They have high CIW (Chemical Index of Weathering) values (90.4–94.7), indicating intense chemical weathering of the source material. The samples display light rare earth elements (LREE) enrichment with negative Eu anomalies (Eu/Eu*=0.40–0.68), and have flat heavy rare earth elements (HREE) patterns. The high contents of transition elements (e.g. Cr, Ni, Sc, V) and moderately radiogenic Nd isotopic compositions suggest that the paragneisses might be those of first-cycle erosion products of predominantly mafic rocks mixing with small amounts of felsic moderately evolved Archaean crustal source. Geochemical and Nd isotopic compositions reveal that at least some of the protoliths of Kongling khondalite were sourced from local pre-existing mafic igneous rocks in a continental arc tectonic setting. Combined with documented zircon U–Pb geochronological data, we propose that the Palaeoproterozoic high-pressure granulite-facies metamorphism, rapid weathering, erosion and deposition of the khondalites in the interior of the Yangtze craton might be related to a Palaeoproterozoic collisional orogenic event during 2.1–1.9 Ga, consistent with the worldwide contemporary orogeny, implying that the Yangtze craton may have been an important component of the Palaeoprotorozoic Columbia supercontinent.


2020 ◽  
pp. 1-21
Author(s):  
Quan Ou ◽  
Jian-Qing Lai ◽  
Bruna B. Carvalho ◽  
Feng Zi ◽  
Zi-Qi Jiang ◽  
...  

Abstract The study of enclaves in granitic plutons provides fundamental information on the petrogenesis of their host rocks. Here we combine U–Pb zircon ages, petrography, geochemistry and Nd–Hf isotope composition to investigate the origin of dioritic–granodioritic enclaves and their host granodiorites and biotite granites in the Xuehuading–Panshanchong area, which is a pivotal site to study the Palaeozoic intracontinental orogenic processes of the South China Block. Obtained ages indicate that the host rocks were formed in early Silurian time (c. 432 Ma). The enclaves are fine grained, but with mineral assemblages similar to their hosts and contain amphibole, biotite and plagioclase. All rocks have fractionated rare earth element patterns ((La/Yb)N = 2.86–8.16), except for one biotite granite that has a concave rare earth element pattern ((La/Yb)N = 1.50). Most rocks are depleted in Ta–Nb–Ti, and have negative Eu anomalies and ϵNd(t) (–8.86 to –5.75) and zircon ϵHf(t) (–13.30 to –4.11, except for one, –39.08). We interpret that the enclaves were formed at the borders of magma-ascending conduits, where the mafic mineral crystallization was enhanced by rapid cooling. Conversely, the biotite granites were produced by fractional crystallization from a related granodiorite magma. The sample with a concave rare earth element pattern may have been influenced by hydrothermal fluid–melt interaction. Geochemical modelling suggests that the granodiorites were likely generated by disequilibrium melting of heterogeneous amphibolites in the middle–lower crust. Considering the geological data for the Palaeozoic magmatic rocks in the South China Block, we propose that the Xuehuading–Panshanchong magmatism was likely triggered by piecemeal removal of the thickened lithospheric root and subsequent thermal upwelling of mantle, without a mantle-derived magma contribution to the granites.


2017 ◽  
Vol 91 (5) ◽  
pp. 1751-1766 ◽  
Author(s):  
Yao GUAN ◽  
Xiaoming SUN ◽  
Guiyong SHI ◽  
Xiaodong JIANG ◽  
Hongfeng LU

2021 ◽  
Vol 217 ◽  
pp. 103605
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Sanzhong Li ◽  
R. Dietmar Müller

Sign in / Sign up

Export Citation Format

Share Document