What triggered the early-stage eruption of the Emeishan large igneous province?

2019 ◽  
Vol 131 (11-12) ◽  
pp. 1837-1856 ◽  
Author(s):  
Bei Zhu ◽  
Zhaojie Guo ◽  
Shaonan Zhang ◽  
Ingrid Ukstins ◽  
Wei Du ◽  
...  

Abstract The formation of the Emeishan large igneous province is widely regarded as being related to a mantle plume, but plate tectonics may also have played an important role. We analyzed the regional facies architecture of the early-stage subaqueous volcanic rocks of the central Emeishan large igneous province. The results suggest that these rocks were emplaced in a N-S–striking subaqueous rift, which existed immediately before the onset of volcanism and was persistently maintained during the early eruption stage. By linking this conclusion with the background information indicating that (1) the basaltic geochemistry in this section is indicative of a subcontinental lithospheric mantle source rather than a mantle plume source, and (2) the western Yangtze plate, where the Emeishan large igneous province was developed, was located in the back-arc region of the Permian Paleo-Tethys subduction system, we propose a new view that the early-stage eruptions of the Emeishan large igneous province were triggered by back-arc extension. The dominant functioning of the mantle plume occurred shortly after this process and inherited it, as evidenced by the following: (1) The subaqueous volcanic architecture showing back-arc geochemical affinity is laterally restricted in the presumed rift, but the overlying subaerial lavas showing plume-related geochemical features overwhelmingly flooded the whole province; (2) vertically, the source of the basaltic component in these intrarift sequences underwent a gradual transition from lithospheric origin to mantle plume origin along the stratigraphic order, as evidenced by an intercalated basaltic succession showing mixed geochemical features from the two contextual origins.

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 457-461 ◽  
Author(s):  
J. Gregory Shellnutt ◽  
Thuy Thanh Pham ◽  
Steven W. Denyszyn ◽  
Meng-Wan Yeh ◽  
Tuan-Anh Tran

Abstract The eruption of Emeishan lava in southwestern China and northern Vietnam is considered to be a contributing factor to the Capitanian mass extinction and subsequent global cooling event, but the duration of volcanism is uncertain. The difficulty in assessing the termination age is, in part, due to the lack of high-precision age data for late-stage volcanic rocks. The Tu Le rhyolite of northern Vietnam is the most voluminous silicic unit of the Emeishan large igneous province (ELIP) and is spatially associated with the Muong Hum and Phan Si Pan hypabyssal plutons. Chemical abrasion–isotope dilution–thermal ionization mass spectrometry U-Pb dating of zircons from the Tu Le rhyolite (257.1 ± 0.6 Ma to 257.9 ± 0.3 Ma) and Muong Hum (257.3 ± 0.2 Ma) and Phan Si Pan (256.3 ± 0.4 Ma) plutons yielded the youngest high-precision ages of the ELIP yet determined. The results demonstrate that Emeishan lavas erupted over a period of ∼6 m.y,. with plutonism ending shortly thereafter. Thus, it is possible that Emeishan volcanism contributed to global cooling into the middle Wuchiapingian. It appears that these rocks represent a distinct period of ELIP magmatism, as they are young and were emplaced oblique to the main north-south–trending Panxi rift.


2020 ◽  
pp. 1-10
Author(s):  
Wen-Chang Cai ◽  
Zhao-Chong Zhang ◽  
Jiang Zhu ◽  
M. Santosh ◽  
Rong-Hao Pan

Abstract The Emeishan large igneous province (ELIP) in SW China is considered to be a typical mantle-plume-derived LIP. The picrites formed at relatively high temperatures in the ELIP, providing one of the important lines of argument for the role of mantle plume. Here we report trace-element data on olivine phenocrysts in the Dali picrites from the ELIP. The olivines are Ni-rich, and characterized by high (>1.4) 100×Mn/Fe value and low (<13) 10 000×Zn/Fe value, indicating a peridotite-dominated source. Since the olivine–melt Ni partition coefficient (KDNiol/melt) will decrease at high temperatures and pressures, the picrites derived from peridotite melting at high pressure, and that crystallized olivines at lower pressure, can generate high concentrations of Ni in olivine phenocrysts, excluding the necessity of a metasomatic pyroxenite contribution. Based on the Al-in-olivine thermometer, olivine crystallization temperature and mantle potential temperature (TP) were calculated at c. 1491°C and c. 1559°C, respectively. Our results are c. 200°C higher than that of the normal asthenospheric mantle, and are consistent with the role of a mantle thermal plume for the ELIP.


2021 ◽  
pp. jgs2020-224
Author(s):  
Bei Zhu ◽  
Zhaojie Guo ◽  
Shaonan Zhang ◽  
Ning Ye ◽  
Ziye Lu ◽  
...  

The latest studies proved contribution of the Emeishan mantle plume (the widely-regarded origin of the Emeishan LIP in the western Yangtze Plate. LIP: large igneous province) to the Palaeo-Tethys subduction. However, whether the Palaeo-Tethys subduction oppositely affected the formation of the Emeishan LIP remains poorly understood. Here, we report geochronological, petrological, geochemical and isotopic studies of a gabbroic intrusion in this LIP, located in Jiangwei, the Dali area. The gabbro has a weighted mean SHRIMP U-Pb age of ∼262 Ma. Key geochemical features include Nb, Ta and Ti depletion; Th, U and Sr enrichment, low light/heavy rare earth element ratios and ∼0.707 87Sr/86Sr(t) and ∼-0.21 εNd(t) values. We conducted pMELTS thermodynamic modeling and batch melting calculations to evaluate the origin and evolution of the gabbro, based on real components of low-Ti picrites and xenolith of the Yangtze lithosphere. The results support 3% melting of a hydrated spinel peridotite source from the Yangtze lithosphere can produce magma equivalent to the gabbro components. Integrating this conclusion with tectonic background of the western Yangtze Plate and volcano-stratigraphic record of the Emeishan LIP, we infer the early-stage magmatism of the Emeishan LIP was triggered by Paleo-Tethys back-arc extension with fluid modification from subductional slab.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5433267


Sign in / Sign up

Export Citation Format

Share Document