High resolution linkage of channel-coastal plain and shallow marine facies belts, Desert Member to Lower Castlegate Sandstone stratigraphic interval, Book Cliffs, Utah-Colorado, USA

2019 ◽  
Vol 131 (9-10) ◽  
pp. 1643-1672 ◽  
Author(s):  
Simon A.J. Pattison

AbstractThe Campanian Desert Member and Lower Castlegate Sandstone in the Book Cliffs of east-central Utah to western Colorado, USA, has served as a foundational data set in the development of sequence stratigraphy. Contrary to previous work, no third-order sequence boundaries are recognized. These were originally thought to partition the neighboring coastal plain and shallow marine facies belts into separate systems tracts, unlinked in time or space. In contrast, adjoining channel-coastal plain and shallow marine facies belts are genetically-, temporally-, and spatially-related. Evidence includes the (i) synchronous, strongly progradational stacking patterns within each facies belt, (ii) gradational and conformable transitions between adjoining facies belts, accentuated by the ubiquity of flat-topped, rooted foreshore sandstones passing upwards into carbonaceous-rich-mudstone-dominated coastal plain, (iii) parasequence-scale interfingering of coastal plain-channel and foreshore-shoreface deposits, with channels, white caps and coals embedded within stacked shoreface parasequences, (iv) regional correlation of coals and flooding surfaces, and (v) near orthogonal paleocurrent relationship between channels and shorelines. Terminal channels incise into proximal foreshore-shoreface sandstones in most Desert-Castlegate parasequences. Incisions are generally confined to the parasequence in which the channels are nested, rarely cutting deeper. These shoreface-incised channels are cut and filled at a parasequence-scale, and are bounded above by the same flooding surface that caps each foreshore-shoreface package. The ubiquity of ascending regressive shoreface trajectories and near absence of descending regressive trajectories that intersect depositional slope argues against any significant sea level fall. Increased rates of sediment supply, driven by autogenic and/or allogenic processes, likely generated the strongly progradational Desert-Castlegate great tongue of sandstone.

2020 ◽  
Vol 90 (10) ◽  
pp. 1265-1285
Author(s):  
Aaron M. Hess ◽  
Christopher R. Fielding

ABSTRACT Most sequence stratigraphic models are based on the premise that relative changes in sea level (RSL) control stacking patterns in continental-margin settings. An alternative hypothesis, however, is that upstream factors, notably variations in relative water discharge (RQW) or the ratio of water to sediment discharge can influence or control stratal stacking patterns in fluvial systems. Sequence boundaries of RQW-driven systems differ from those driven by base-level fluctuations in that: 1) the depth of incision increases updip, and 2) rates of erosion are spatially uniform, leading to the formation of widespread, planar sequence boundaries. This paper presents an architectural and stratigraphic analysis of the well-exposed Masuk Formation of the Henry Mountains Syncline in southern Utah, an Upper Cretaceous coastal-plain fluvial succession that is interpreted to have been influenced significantly by RQW. Six lithofacies are recognized, three (Facies 1–3) recording floodbasin, mire, and (in one short interval) estuarine environments, and three (Facies 4–6) record different kinds of channel fills on a coastal alluvial plain. Seven major composite channel bodies (Facies 4–6), separated by intervals of non-channel deposits (Facies 1–3), are recognized in the stratigraphic interval. Composite channel bodies display planar, sheet-like geometry and are laterally continuous to a significantly greater extent (> 10 km) than would be expected from purely autogenic channel-belt construction. Together, these intervals record a series of high-frequency sequences, formed along the western margin of the Western Interior Seaway. In each individual sequence is a repetitive facies succession from a basal chaotic sandstone with admixed mudrock and sandstone transitioning upward to a more organized cross-bedded and stratified sandstone. This is interpreted to record cyclical changes from a peaked (flashy) discharge regime to a more normal runoff regime. Paleoflow data indicate a dominance of transverse (eastward-directed) dispersal early in the accumulation of the Masuk Formation, shifting to a pattern of greater axial (northward) dispersal over time. The RQW signal is strong in the lower part of the formation, decreasing upward. This suggests that the relatively short-headed streams draining from the rising Sevier fold–thrust belt were strongly influenced by climatic cyclicity, whereas more distally sourced systems were not. This study provides new insights into the architecture and stacking patterns of coastal-plain fluvial successions, emphasizing the plausible role that climate can play in shaping alluvial architecture in the rock record.


2020 ◽  
Vol 90 (7) ◽  
pp. 713-728
Author(s):  
Jesse D. Thornburg ◽  
Kenneth G. Miller ◽  
James V. Browning

ABSTRACT We developed a sequence stratigraphic framework for the (Barremian to lower Cenomanian) fluvial–deltaic (primarily delta plain) Potomac Formation in the Medford, New Jersey, Fort Mott, New Jersey, and Summit Marina, Delaware coreholes. Previous studies have correlated distinctive lithologic units with attendant pollen zones and identified tentative sequence boundaries between lithologic units I (Barremian to lower Aptian, pollen Zone I), II (Aptian to lowermost Cenomanian, pollen Zone II), and III (lower Cenomanian, pollen Zone III) at all three sites. Here, we further subdivide these units into packages known as fluvial aggradation cycles (FACs). An analysis of FAC stacking patterns reveals potential sequence boundaries and systems tracts. FACs indicate that major lithologic unit boundaries are also sequence boundaries, indicate tentative higher-order sequence boundaries, and provide potential additional correlative surfaces among Potomac Formation sites. Our study demonstrates the applicability of the FAC method to identify stacking patterns and sequence stratigraphic surfaces in fluvial–deltaic deposits and demonstrates that FACs are excellent tools to decipher the difficult-to-correlate surfaces.


2018 ◽  
Vol 48 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Safia Al Menoufy ◽  
Mohamed Boukhary

Abstract Nummulites fayumensis n. sp. and Nummulites tenuissimus n. sp. are described from the Munqar El-Rayan Section, Fayum, Egypt. Nummulites tenuissimus belongs to the N. partschi group, while N. fayumensis belongs to the N. gizehensis group, based on diameter and protoconch sizes, septal shape and granulations. Both new species are of Lutetian age, assigned to SBZ14/15, and encountered in shallow-marine facies. Wadi El-Rayan is an important site for vertebrate fossils in Egypt and the abundant larger benthic foraminiferal assemblage provides insight into paleoenvironmental parameters associated with the deposition of Eocene-age rock units of the Munqar El-Rayan Section.


GeoArabia ◽  
2005 ◽  
Vol 10 (2) ◽  
pp. 189-192 ◽  
Author(s):  
Moujahed Al-Husseini ◽  
Robley K. Matthews

The recent publication of GTS 2004 (Gradstein et al., 2004) provides an opportunity to recalibrate in time the late Carboniferous, Permian and Early Traissic Arabian Stratigraphy (GeoArabia Special Publication 3, Edited by Al-Husseini, 2004) as represented by the rock units in subsurface Interior Oman (Osterloff et al., 2004a, b) and the Haushi-Huqf Uplift region (Angiolini et al., 2004) (Figure). Additionally, sequence stratigraphic models of orbital forcing (Matthews and Frohlich, 2002; Immenhauser and Matthews, 2004) provide new insights in regards to the time calibration of depositional sequences: the “Rosetta Stone” approach. The Rosetta Stone approach predicts that the period of a third-order depositional sequence is 2.430 ± 0.405 my (denoted DS3 and here adjusted to increase the fourth-order ‘geological tuning fork’ from 0.404 to 0.405 my based on Laskar et al., 2004). The present calibration is also tied to the orbital-forcing model developed by R.K. Matthews (in Al-Husseini and Matthews, 2005; this issue of GeoArabia) that predicts that a second-order depositional sequence (denoted DS2) consists of six DS3s that were deposited in a period of about 14.58 my (6 x 2.430 my); the DS2 being bounded by two regional second-order sequence boundaries (SB2) corresponding to sea-level maximum regression surfaces.


Sign in / Sign up

Export Citation Format

Share Document