scholarly journals On the reconciliation of biostratigraphy and strontium isotope stratigraphy of three southern Californian Plio-Pleistocene formations

2020 ◽  
Vol 133 (1-2) ◽  
pp. 100-114
Author(s):  
Alexandra J. Buczek ◽  
Austin J.W. Hendy ◽  
Melanie J. Hopkins ◽  
Jocelyn A. Sessa

Abstract The San Diego Formation, Pico Formation, Careaga Sandstone, and Foxen Mudstone of southern California are thought to be late Pliocene to early Pleistocene; however, numerical ages have not been determined. Following assessment of diagenetic alteration via multiple methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), and minor elemental concentrations, we attempted to use strontium isotope stratigraphy to assign numerical ages. Using aragonitic fossils, we obtained ages of 2.0–1.85 Ma for the Careaga Sandstone and 2.0–1.75 Ma for the uppermost Foxen Mudstone, consistent with biostratigraphic work suggesting a Gelasian age for the Careaga Sandstone. Isotope ratios for aragonitic and calcitic fossils from the Pico Formation were poorly constrained, with the exception of one bed yielding ages of 5.1–4.3 Ma. Isotope ratios from the San Diego Formation were also inconsistent within beds, with the exception of two isolated outcrops that yielded ages of 5.0–4.5 Ma and 4.5–2.8 Ma, respectively. The age estimates for the Pico and San Diego Formations are older than most ages inferred from biostratigraphy. Noting that some aragonitic specimens from the San Diego Formation yielded isotope ratios indicative of ages as old as 19.4 Ma, we propose that some outcrops have been affected by diagenesis caused by groundwater flow through proximal granitic rocks and input from detrital sediment. Although we recommend that strontium isotope results for the Pico and San Diego Formations be interpreted with caution, the ages of the uppermost Foxen Mudstone and Careaga Sandstone can be confidently placed within the early Pleistocene.

2012 ◽  
Vol 25 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Piotr Jadwiszczak ◽  
Krzysztof P. Krajewski ◽  
Zinaida Pushina ◽  
Andrzej Tatur ◽  
Grzegorz Zieliński

AbstractThis paper presents the first fossil penguin from East Antarctica, and the only one known south of the Antarctic Circle. It is represented by two well-preserved elements of the wing skeleton, humerus and radius, obviously assignable to the extant genus Spheniscus. They were found in the glaciomarine succession of the Fisher Bench Formation (Fisher Massif, Prince Charles Mountains, Mac. Robertson Land), which was dated using Strontium Isotope Stratigraphy to be Late Miocene in age (10.2 Ma). They are only slightly younger than the oldest remains undoubtedly attributable to this taxon. The X-ray diffraction and Fourier Transform Infrared Spectroscopy indicate diagenetic alteration of the original bone bioapatite under dominantly marine conditions. The Late Miocene was a period of ice margin retreat and marine incursion into the Lambert embayment that followed Middle Miocene cooling of the Antarctic climate. The fossils strongly suggest that variable climatic and environmental conditions in East Antarctica may have been an important factor in the evolution of penguins there during the Neogene.


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 992-996 ◽  
Author(s):  
Neal C. Auchter ◽  
Brian W. Romans ◽  
Stephen M. Hubbard ◽  
Benjamin G. Daniels ◽  
Howie D. Scher ◽  
...  

Abstract Temporary storage of sediment between source and sink can hinder reconstruction of climate and/or tectonic signals from stratigraphy by mixing of sediment tracers with diagnostic geochemical or geochronological signatures. Constraining the occurrence and timing of intrabasinal sediment recycling has been challenging because widely used detrital geo-thermochronology applications do not record shallow burial and subsequent reworking. Here, we apply strontium isotope stratigraphy techniques to recycled marine shell material in slope deposits of the Upper Cretaceous Tres Pasos Formation, Magallanes Basin, Chile. Detrital 87Sr/86Sr ages from 94 samples show that the majority (>85%) of the shells are >1–12 m.y. older than independently constrained depositional ages. We interpret the gap between mineralization age (87Sr/86Sr age) and depositional age of host strata to represent the intrabasinal residence time of sediment storage at the million-year time scale. We also use specimen type to infer relative position of intrabasinal source material along the depositional profile, where oysters represent shallow-water (i.e., proximal) sources and inoceramids represent deeper-water (i.e., distal) sources. The combined use of detrital strontium isotope ages and specimen types from linked depositional segments provides an opportunity to identify and quantify sediment storage and recycling in ancient source-to-sink systems.


2019 ◽  
Vol 132 (3-4) ◽  
pp. 803-816 ◽  
Author(s):  
Tianlai Fan ◽  
Kefu Yu ◽  
Jianxin Zhao ◽  
Wei Jiang ◽  
Shendong Xu ◽  
...  

Abstract Understanding the history of the response of coral reefs to past climate changes can provide valuable information for predicting the future response of modern reefs. However, dating such ancient biotic carbonate is still challenging because of its sensitivity to diagenetic alteration processes, scarcity of well-preserved fossils, and low magnetic mineral content. There have been a long debates about the origin and evolutionary history of coral reefs in the northern South China Sea, mainly due to the lack of direct and reliable age constraints. This provides us with a good opportunity to verify the practicability of different dating approaches, especially the strontium (Sr) isotope analysis of bulk carbonate. Here, we retrieved a 972.55-m-long core from the Xisha Islands to provide a credible chronologic constraint on the carbonate platform evolution. The lithostratigraphy, strontium isotope stratigraphy, and magnetostratigraphy were analyzed throughout the whole reef sequence. The lithostratigraphic results show that the 873.55 m reef sequence developed on an ancient volcaniclastic basement and experienced multiple evolutionary phases. The 87Sr/86Sr results of all 100 bulk carbonate samples vary from 0.708506 to 0.709168 and show a monotonic increase with decreasing depth, except for a few outliers. Trace-element criteria and stable isotope (δ18O and δ13C) methods were applied to these bulk carbonate samples, and results imply that the primary or near-primary seawater 87Sr/86Sr values were likely preserved, although different degrees of diagenetic alteration occurred. In addition, the paleomagnetic results indicate 10 normal polarity and eight reversed polarity magnetozones. Based on the 87Sr/86Sr ratios of the selected 58 samples and paleomagnetic reconstruction of polarity reversals, the bottom of the reef sequence is dated to 19.6 Ma, and the observed polarity chronozones extend from chron C6 (19.722–18.748 Ma) at 866.60 m to present at the top. Based on the new data, we propose a new chronologic framework for the evolutionary history of the reef islands, where: (1) the reefs initiated in the early Miocene (19.6 Ma) and were drowned until 16.26 Ma; (2) during 16.26–10.66 Ma, lagoon to lagoon slope environments prevailed; (3) the lagoon environment progressively transformed into a reef crest environment from 10.66 to 4.36 Ma and 4.36 to 1.59 Ma; and (4) the reef started to be drowned again during 1.59–0 Ma. Our study provides a new and reliable chronologic constraint on the general evolutionary history of the reef islands in the northern South China Sea. Furthermore, the 87Sr/86Sr results from bulk carbonate indicate that strontium isotope stratigraphy is a powerful dating tool only when rigid sample selection, sequential leaching procedures, and strict trace-element and isotopic criteria are applied.


Sign in / Sign up

Export Citation Format

Share Document