Fault kinematics: A record of tectono-climatically controlled sedimentation along passive margins, an example from the U.S. Gulf of Mexico

Author(s):  
Abah P. Omale ◽  
Juan M. Lorenzo ◽  
Ali AlDhamen ◽  
Peter D. Clift ◽  
A. Alexander G. Webb

Faults offsetting sedimentary strata can record changes in sedimentation driven by tectonic and climatic forcing. Fault kinematic analysis is effective at evaluating changes in sediment volumes at salt/shale-bearing passive margins where sediment loading drives faulting. We explore these processes along the northern Gulf of Mexico. Incremental throw along 146 buried faults studied across onshore Louisiana revealed continual Cenozoic fault reactivation punctuated by inactive periods along a few faults. Fault scarp heights measured from light detection and ranging (LiDAR) data are interpreted to show that Cenozoic fault reactivation continued through the Pleistocene. The areas of highest fault throw and maximum sediment deposition shifted from southwest Louisiana in the early Miocene to southeast Louisiana in the middle−late Miocene. These changes in the locus of maximum fault reactivation and sediment deposition were controlled by changing tectonics and climate in the source areas. Early Miocene fault throw estimates indicate a depocenter farther east than previously mapped and support the idea that early Miocene Appalachian Mountain uplift and erosion routed sediment to southeast Louisiana. By correlating changes in fault throw with changes in sediment deposition, we suggest that (1) fault kinematic analysis can be used to evaluate missing sediment volumes because fault offsets can be preserved despite partial erosion, (2) fault throw estimates can be used to infer changes in past tectonic and climate-related processes driving sedimentation, and (3) these observations are applicable to other passive margins with mobile substrates and faulted strata within overfilled sedimentary basins.

2020 ◽  
Author(s):  
Abah P. Omale ◽  
et al.

Details on well log cross sections, seismic cross section, and LiDAR images within the study area.


2020 ◽  
Author(s):  
Abah P. Omale ◽  
et al.

Details on well log cross sections, seismic cross section, and LiDAR images within the study area.


2021 ◽  
Author(s):  
Hongdan Deng ◽  
Ken McClay

<div>Basement fault reactivation, and the growth, interaction, and linkage with new fault segments are fundamentally three-dimensional and critical for understanding the evolution of fault network development in sedimentary basins. This paper analyses the evolution of a complex, basement-involved extensional fault network on the Enderby Terrace on the eastern margin of the Dampier sub-basin, NW Shelf of Australia. A high-resolution, depth-converted, 3D seismic reflection data volume is used to show that multiphase, oblique extensional reactivation of basement-involved faults controlled the development of the fault network in the overlying strata. Oblique reactivation of the pre-existing faults initially led to the formation of overlying, en échelon Late Triassic – Middle Jurassic fault segments that, as WNW–directed rifting progressed on the margin, linked by breaching of relay ramp to form two intersecting fault systems (F1 and F2-F4). Further reactivation in the Latest Jurassic – Early Cretaceous (NNW–SSE extension) produced an additional set of en échelon fault arrays in the cover strata. The final fault network consists of main or principal faults and subordinate or splay faults, together with branch lines that link the various components. Our study shows that breaching of relay ramps and/or vertical linkages produces vertical and horizontal branch lines giving complex final fault geometries. We find that repeated activity of the basement-involved faults tends to form continuous and planar fault architectures that favor displacement transfer between the main constituent segments along strike and with depth.</div>


1978 ◽  
Vol 18 (1) ◽  
pp. 143 ◽  
Author(s):  
A.J Kantsler ◽  
G. C. Smith ◽  
A. C. Cook

Vitrinite reflectance measurements are used to determine the vertical and lateral patterns of rank variation within four Australian sedimentary basins. They are also used to estimate palaeotemperatures which, in conjunction with present well temperatures, allow an appraisal of the timing of coalification and of hydrocarbon generation and distribution.The Canning Basin has a pattern of significant pre-Jurassic coalification which was interrupted by widespread uplift and erosion in the Triassic. Mesozoic and Tertiary coalification is generally weak, resulting in a pattern of rank distribution unfavourable to oil occurrence but indicating some potential for gas. The Cooper Basin also has a depositional break in the Triassic, but the post-Triassic coalification is much more significant than in the Canning Basin. The major gas fields are in, or peripheral to, areas which underwent strong, early, telemagmatic coalification whereas the oil-prone Tirrawarra area is characterized by a marked rise in temperature in the late Tertiary. The deeper parts of the Bass Basin underwent early coalification and are in the zone of oil generation, while most of the remaining area is immature. Inshore areas of the Gippsland Basin are also characterized by early coalification. Areas which are further offshore are less affected by this phase of early maturation, but underwent rapid burial and a sharp rise in temperature in the late Tertiary.


2020 ◽  
Author(s):  
Magdalena Scheck-Wenderoth ◽  
Judith Bott ◽  
Mauro Cacace ◽  
Denis Anikiev ◽  
Maria Laura Gomez Dacal ◽  
...  

<p>The configuration of the lithosphere below sedimentary basins varies in response to the basin-forming mechanism, the lifetime of the causative stress fields and the lithological heterogeneity inherited from pre-basin tectonic events. Accordingly, the deep thermal configuration is a function of the tectonic setting, the time since the thermal disturbance occurred and the internal heat sources within the lithosphere. We compare deep thermal configurations in different settings based on data-constrained 3D lithosphere-scale thermal models that consider both geological and geophysical observations and physical processes of heat transfer. The results presented come from a varied range of tectonic settings including: (1) the extensional settings of the Upper Rhine Graben and the East African Rift System, where we show that rifts can be hot for different reasons; (2) the North and South Atlantic passive margins, demonstrating that magma-rich passive margins can be comparatively hot or cold depending on the thermo-tectonic age; (3) the Alps, where we find that foreland basins are influenced by the conductive properties and heat-producing units of the adjacent orogen; and (4)the Sea of Marmara, along the westernmost sector of the North Anatolian Fault Zone, that suggest strike-slip basins may be thermally segmented.</p>


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1708-1714 ◽  
Author(s):  
Joseph O. Ebeniro ◽  
Yosio Nakamura ◽  
Dale S. Sawyer

The presence of shallow, tectonized salt is a major impediment to exploration efforts in many sedimentary basins, including the northern Gulf of Mexico. The salt there forms a shallow tongue of high‐velocity material emplaced between lower‐velocity Tertiary and Quaternary sediments. Using conventional seismic reflection techniques, explorationists often have difficulty identifying the base of the salt tongue. Only in a very few instances (e.g., Buffler, 1983; Buffler et al., 1978; Watkins et al., 1978) have they been able to identify the base of the shallow salt. Interfaces below the salt are even more rarely observed.


GeoArabia ◽  
1996 ◽  
Vol 1 (1) ◽  
pp. 28-51 ◽  
Author(s):  
Ramon J.H. Loosveld ◽  
Andy Bell ◽  
Jos J.M. Terken

ABSTRACT The evolution of Oman’s onshore sedimentary basins from the Late Precambrian to the Present is reflected by six tectono-stratigraphic units. Unit I, the Precambrian basement, represents continental accretion. Units II and III, Infracambrian to Ordovician, may reflect two periods of rifting, possibly related to Najd movements in western Saudi Arabia. The northeast-southwest trending salt basins formed during this time interval. A classical “steer’s head” basin geometry is developed in North Oman, whereas a less complete rift-sag sequence is preserved in South Oman. Of the entire time-span from Late Silurian to Mid-Carboniferous, only little Devonian (Emsian) sediment is preserved. Unit IV, Late Carboniferous to Mid-Cretaceous, reflects the break-up of Gondwana and the creation of the northeastern and southeastern passive margins of the Arabian Plate. Unit V documents intra-plate deformation related to Late Cretaceous continent-ocean obduction in the north and transpressional movements of the Indian Plate in the east. Unit VI, spanning the Tertiary, represents a return to quiet conditions followed by continent-continent collision in the north. Following Late Eocene uplift, the Gulf of Aden rift developed in the south in the early Oligocene, with sea-floor spreading from the Late Miocene onwards. Salt flow and dissolution, both playing a major role in the configuration of most intra- and post-salt hydrocarbon traps in Oman, are episodic and can be related to tectonic events.


Sign in / Sign up

Export Citation Format

Share Document