scholarly journals New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada

Author(s):  
T.V. Naber ◽  
S.E. Grasby ◽  
J.P. Cuthbertson ◽  
N. Rayner ◽  
C. Tegner

The High Arctic Large Igneous Province (HALIP) represents extensive Cretaceous magmatism throughout the circum-Arctic borderlands and within the Arctic Ocean (e.g., the Alpha-Mendeleev Ridge). Recent aeromagnetic data shows anomalies that extend from the Alpha Ridge onto the northern coast of Ellesmere Island, Nunavut, Canada. To test this linkage we present new bulk rock major and trace element geochemistry, and mineral compositions for clinopyroxene, plagioclase, and olivine of basaltic dykes and sheets and rhyolitic lavas for the stratotype section at Hansen Point, which coincides geographically with the magnetic anomaly at northern Ellesmere Island. New U-Pb chronology is also presented. The basaltic and basaltic-andesite dykes and sheets at Hansen Point are all evolved with 5.5−2.5 wt% MgO, 48.3−57.0 wt% SiO2, and have light rare-earth element enriched patterns. They classify as tholeiites and in Th/Yb vs. Nb/Yb space they define a trend extending from the mantle array toward upper continental crust. This trend, also including a rhyolite lava, can be modeled successfully by assimilation and fractional crystallization. The U-Pb data for a dacite sample, that is cut by basaltic dykes at Hansen Point, yields a crystallization age of 95.5 ± 1.0 Ma, and also shows crustal inheritance. The chronology and the geochemistry of the Hansen Point samples are correlative with the basaltic lavas, sills, and dykes of the Strand Fiord Formation on Axel Heiberg Island, Nunavut, Canada. In contrast, a new U-Pb age for an alkaline syenite at Audhild Bay is significantly younger at 79.5 ± 0.5 Ma, and correlative to alkaline basalts and rhyolites from other locations of northern Ellesmere Island (Audhild Bay, Philips Inlet, and Yelverton Bay West; 83−73 Ma). We propose these volcanic occurrences be referred to collectively as the Audhild Bay alkaline suite (ABAS). In this revised nomenclature, the rocks of Hansen Point stratotype and other tholeiitic rocks are ascribed to the Hansen Point tholeiitic suite (HPTS) that was emplaced at 97−93 Ma. We suggest this subdivision into suites replace the collective term Hansen Point volcanic complex. The few dredge samples of alkali basalt available from the top of the Alpha Ridge are akin to ABAS in terms of geochemistry. Our revised dates also suggest that the HPTS and Strand Fiord Formation volcanic rocks may be the hypothesized subaerial large igneous province eruption that drove the Cretaceous Ocean Anoxic Event 2.

2021 ◽  
Author(s):  
Tiera V. Naber ◽  
Steve E. Grasby ◽  
Jennifer P. Cuthbertson ◽  
Nicole Rayner ◽  
Christian Tegner

<p>The High Arctic Large Igneous Province (HALIP) represents extensive Cretaceous magmatism throughout the circum-Arctic borderlands and within the Arctic Ocean (e.g., the Alpha-Mendeleev Ridge). Recent aeromagnetic data shows anomalies that extend from the Alpha Ridge onto the northern coast of Ellesmere Island, Nunavut, Canada. To test this linkage we present new bulk rock major and trace element geochemistry, and mineral compositions for clinopyroxene, plagioclase, and olivine of basaltic dykes and sheets and rhyolitic lavas for the stratotype section at Hansen Point, which coincides geographically with the magnetic anomaly at northern Ellesmere Island. New U-Pb chronology is also presented.</p><p>The basaltic and basaltic-andesite dykes and sheets at Hansen Point are all evolved with 5.5–2.5 wt% MgO, 48.3–57.0 wt% SiO2, and have light rare-earth element enriched patterns. They classify as tholeiites and in Th/Yb vs. Nb/Yb space they define a trend extending from the mantle array toward upper continental crust. This trend, also including a rhyolite lava, can be modeled successfully by assimilation and fractional crystallization. The U-Pb data for a dacite sample, that is cut by basaltic dykes at Hansen Point, yields a crystallization age of 95.5 ± 1.0 Ma, and also shows crustal inheritance. The chronology and the geochemistry of the Hansen Point samples are correlative with the basaltic lavas, sills, and dykes of the Strand Fiord Formation on Axel Heiberg Island, Nunavut, Canada. In contrast, a new U-Pb age for an alkaline syenite at Audhild Bay is significantly younger at 79.5 ± 0.5 Ma, and correlative to alkaline basalts and rhyo- lites from other locations of northern Ellesmere Island (Audhild Bay, Philips Inlet, and Yelverton Bay West; 83–73 Ma). We propose these volcanic occurrences be referred to collectively as the Audhild Bay alkaline suite (ABAS). In this revised nomenclature, the rocks of Hansen Point stratotype and other tholeiitic rocks are ascribed to the Hansen Point tholeiitic suite (HPTS) that was emplaced at 97–93 Ma. We suggest this subdivision into suites replace the collective term Hansen Point volcanic complex.</p><p>The few dredge samples of alkali basalt available from the top of the Alpha Ridge are akin to ABAS in terms of geochemistry. Our revised dates also suggest that the HPTS and Strand Fiord Formation volcanic rocks may be the hypothesized subaerial large igneous province eruption that drove the Cretaceous Ocean Anoxic Event 2.</p>


2021 ◽  
Author(s):  
Michael Pointon ◽  
Michael Flowerdew ◽  
Peter Hülse ◽  
Simon Schneider ◽  
Ian Millar ◽  
...  

<p>During Late Cretaceous times the Sverdrup Basin, Arctic Canada, received considerable air-fall volcanic material. This is manifested as numerous centimetre- to decimetre-thick diagenetically altered volcanic ash layers (bentonites) that occur interbedded with mudstones of the Kanguk Formation. Previous research on bentonite samples from an outcrop section in the east of the basin (Sawtooth Range, Ellesmere Island) revealed two distinct volcanic sources for the bentonites: most of the bentonites analysed (n=9) are relatively thick (0.1 to 5 m), were originally alkaline felsic ashes, and were likely sourced from local volcanic centres on northern Ellesmere Island or the Alpha Ridge that were associated with the High Arctic Large Igneous Province (HALIP). Two thinner (<5 cm) bentonites with contrasting subalkaline geochemistry were also identified. These were inferred to have been derived from further afield, from volcanic centres within the Okhotsk-Chukotka Volcanic Belt, Russia.</p><p>To better understand volcanism within the vicinity of the Sverdrup Basin during Late Cretaceous times, and further test the above interpretations, a larger suite of bentonite samples was investigated, drawing on samples from outcrop sections in the central and eastern Sverdrup Basin. Whole-rock geochemical analyses and combined zircon U-Pb age and Hf isotope analyses were undertaken. The vast majority of bentonites analysed to date have alkaline geochemistry and were likely sourced from proximal volcanic centres related to the HALIP. The combined U-Pb and Hf isotope data from these bentonites show a progression from evolved (-2 to 0) to moderately juvenile (+9 to +10) εHf<sub>(t)</sub> values between late Cenomanian and early Campanian times (<em>c</em>. 97–81 Ma). This is interpreted to record compositional change through time within the local HALIP magmatic system.</p>


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


2013 ◽  
Vol 150 (6) ◽  
pp. 1127-1135 ◽  
Author(s):  
FERNANDO CORFU ◽  
STÉPHANE POLTEAU ◽  
SVERRE PLANKE ◽  
JAN INGE FALEIDE ◽  
HENRIK SVENSEN ◽  
...  

AbstractThe opening of the Arctic oceanic basins in the Mesozoic and Cenozoic proceeded in steps, with episodes of magmatism and sedimentation marking specific stages in this development. In addition to the stratigraphic record provided by sediments and fossils, the intrusive and extrusive rocks yield important information on this evolution. This study has determined the ages of mafic sills and a felsic tuff in Svalbard and Franz Josef Land using the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb method on zircon, baddeleyite, titanite and rutile. The results indicate crystallization of the Diabasodden sill at 124.5 ± 0.2 Ma and the Linnévatn sill at 124.7 ± 0.3 Ma, the latter also containing slightly younger secondary titanite with an age of 123.9 ± 0.3 Ma. A bentonite in the Helvetiafjellet Formation, also on Svalbard, has an age of 123.3 ± 0.2 Ma. Zircon in mafic sills intersected by drill cores in Franz Josef Land indicate an age of 122.7 Ma for a thick sill on Severnaya Island and a single grain age of ≥122.2 ± 1.1 Ma for a thinner sill on Nagurskaya Island. These data emphasize the importance and relatively short-lived nature of the Cretaceous magmatic event in the region.


1985 ◽  
Vol 22 (6) ◽  
pp. 881-892 ◽  
Author(s):  
John D. Greenough ◽  
S. R. McCutcheon ◽  
V. S. Papezik

Lower to Middle Cambrian volcanic rocks occur within the Avalon Zone of southern New Brunswick at Beaver Harbour and in the Long Reach area. The Beaver Harbour rocks are intensely altered, but the major- and trace-element geochemistry indicates that they could be highly evolved (basaltic andesites) within-plate basalts. The mafic flows from the Long Reach area form two chemically and petrologically distinct groups: (1) basalts with feldspar phenocrysts that represent evolved continental tholeiites with some oceanic characteristics; and (2) a group of aphyric basalts showing extremely primitive continental tholeiite compositions, also with oceanic affinities and resembling some rift-related Jurassic basalts on the eastern seaboard. Felsic pyroclastic rocks in the Long Reach area make the suite bimodal. This distribution of rock types supports conclusions from the mafic rocks that the area experienced tension throughout the Early to Middle Cambrian.


Sign in / Sign up

Export Citation Format

Share Document