Os, Nd and Sr isotope and trace element geochemistry of the Muli picrites: Insights into the mantle source of the Emeishan Large Igneous Province

Lithos ◽  
2010 ◽  
Vol 119 (1-2) ◽  
pp. 108-122 ◽  
Author(s):  
Jie Li ◽  
Ji-Feng Xu ◽  
Katsuhiko Suzuki ◽  
Bin He ◽  
Yi-Gang Xu ◽  
...  
Author(s):  
T.V. Naber ◽  
S.E. Grasby ◽  
J.P. Cuthbertson ◽  
N. Rayner ◽  
C. Tegner

The High Arctic Large Igneous Province (HALIP) represents extensive Cretaceous magmatism throughout the circum-Arctic borderlands and within the Arctic Ocean (e.g., the Alpha-Mendeleev Ridge). Recent aeromagnetic data shows anomalies that extend from the Alpha Ridge onto the northern coast of Ellesmere Island, Nunavut, Canada. To test this linkage we present new bulk rock major and trace element geochemistry, and mineral compositions for clinopyroxene, plagioclase, and olivine of basaltic dykes and sheets and rhyolitic lavas for the stratotype section at Hansen Point, which coincides geographically with the magnetic anomaly at northern Ellesmere Island. New U-Pb chronology is also presented. The basaltic and basaltic-andesite dykes and sheets at Hansen Point are all evolved with 5.5−2.5 wt% MgO, 48.3−57.0 wt% SiO2, and have light rare-earth element enriched patterns. They classify as tholeiites and in Th/Yb vs. Nb/Yb space they define a trend extending from the mantle array toward upper continental crust. This trend, also including a rhyolite lava, can be modeled successfully by assimilation and fractional crystallization. The U-Pb data for a dacite sample, that is cut by basaltic dykes at Hansen Point, yields a crystallization age of 95.5 ± 1.0 Ma, and also shows crustal inheritance. The chronology and the geochemistry of the Hansen Point samples are correlative with the basaltic lavas, sills, and dykes of the Strand Fiord Formation on Axel Heiberg Island, Nunavut, Canada. In contrast, a new U-Pb age for an alkaline syenite at Audhild Bay is significantly younger at 79.5 ± 0.5 Ma, and correlative to alkaline basalts and rhyolites from other locations of northern Ellesmere Island (Audhild Bay, Philips Inlet, and Yelverton Bay West; 83−73 Ma). We propose these volcanic occurrences be referred to collectively as the Audhild Bay alkaline suite (ABAS). In this revised nomenclature, the rocks of Hansen Point stratotype and other tholeiitic rocks are ascribed to the Hansen Point tholeiitic suite (HPTS) that was emplaced at 97−93 Ma. We suggest this subdivision into suites replace the collective term Hansen Point volcanic complex. The few dredge samples of alkali basalt available from the top of the Alpha Ridge are akin to ABAS in terms of geochemistry. Our revised dates also suggest that the HPTS and Strand Fiord Formation volcanic rocks may be the hypothesized subaerial large igneous province eruption that drove the Cretaceous Ocean Anoxic Event 2.


2021 ◽  
Author(s):  
Bing Zhao ◽  
Xijun Liu ◽  
Zhenglin Li ◽  
Wenmin Huang ◽  
Chuan Zhao

<p>The Emeishan flood basalts are part of an important large igneous province along the western margin of the Yangtze Block, Southwest China. The western Guangxi region in southwestern China is geologically a part of the Yangtze Block. Mafic rocks, comprising mainly lavas and dykes in western Guangxi belong to the outer part of the ~260 Ma Emeishan Large Igneous Province (ELIP). Here we present a systematic study of platinum-group elements (PGEs) combined with the LA-ICP-MS zircon U–Pb age, whole-rock geochemical and isotopic data of the lavas and dykes in the Longlin area of outer zone of ELIP to constraints on their origin. On the basis of petrography and major elements characteristics, mafic lavas and dykes display an enrichment of LREE, LILE, HFSE, high (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> ratios (0.704227~0.705754), low ε<sub>Nd</sub><sub>(t)</sub> values(0.42~0.99), high ε<sub>Hf</sub><sub>(t)</sub> values(5.19~6.04), they are similar to those of Permian Emeishan high-Ti basalts and Ocean island basalts (OIB) features. The Longlin mafic rocks was formed in the Late Permian with the zircon U-Pb dated age of 256.3± 1.7 Ma. The age of the Longlin mafic rocks is close to the formation age of the ELIP large-scale magmatism, suggesting that these lavas and dykes probably belongs to part of the ELIP large-scale magmatism. The Longlin mafic rocks have low total PGE contents ranging from 1.56×10<sup>-9 </sup>to 2.28×10<sup>-9</sup>, with Os, Ir, Ru, Rh, Pt and Pd contents of 0.040~0.076, 0.046~0.076, 0.027~0.079, 0.037~0.056, 0.6374~1.053 and 0.715~1.021ppb, respectively. They show left-leaning primitive mantle-normalized PGE patterns with depletion in Iridium group(IPGE) and enrichment in Palladium group, which also have lower contents than mafic rocks from the inner zone of the ELIP, suggesting that a low degree of partial melting of the mantle source plays an important role. The Longlin mafic rocks exhibit a marked increase in Cu/Pd ratios (>10<sup>5</sup>,84655 to 174785) albeit with a narrow range of lower Pd/Ir ratios (<50,13.4 to 18.7), different from the PGE-enriched basalts of the Siberian Traps, Emeishan Large Igneous Province (ELIP), East Greenland CFBs and Deccan Traps, indicating that their parent magmas was significantly depleted in chalcophile elements. Calculations based on the available trace element geochemistry reveal that the basalts were originated by low degree of partial melting(<5%),with sulfides remain in the mantle during partial melting. Sulfide segregation could not happen during the evolution of the Longlin mafic rocks, due to the fact that neither significant fractional crystallization nor crustal contamination has been involved in their formation. Overall, mafic rocks from the outer zone of the ELIP show lower PGE contents than those in the inner zones, we find that the PGE contents in igneous rocks are related with the degrees of partial melting in the mantle source and the removal of sulfides before their emplacement.</p><p>This study was financially supported by the Guangxi Natural Science Foundation for Distinguished Young Scholars (2018GXNSFFA281009) and the Fifth Bagui Scholar Innovation Project of Guangxi Province (to XU Ji-feng).</p>


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 634
Author(s):  
Shitou Wu ◽  
Yadong Wu ◽  
Yueheng Yang ◽  
Hao Wang ◽  
Chao Huang ◽  
...  

Olivine forsterite contents [Fo = 100 × Mg/(Mg + Fe) in mol%] and minor–trace element concentrations can aid our understanding of the Earth’s mantle. Traditionally, these data are obtained by electron probe microanalysis for Fo contents and minor elements, and then by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) for trace elements. In this study, we demonstrate that LA–ICP–MS, with a simplified 100% quantification approach, allows the calculation of Fo contents simultaneously with minor–trace elements. The approach proceeds as follows: (1) calculation of Fo contents from measured Fe/Mg ratios; (2) according to the olivine stoichiometric formula [(Mg, Fe)2SiO4] and known Fo contents, contents of Mg, Fe and Si can be computed, which are used as internal standards for minor–trace element quantification. The Fo content of the MongOLSh 11-2 olivine reference material is 89.55 ± 0.15 (2 s; N = 120), which agrees with the recommended values of 89.53 ± 0.05 (2 s). For minor–trace elements, the results matched well with the recommended values, apart from P and Zn data. This technique was applied to olivine phenocrysts in the Lijiang picrites from the Emeishan large igneous province. The olivine compositions suggest that the Lijiang picrites have a peridotitic mantle source.


Geology ◽  
2020 ◽  
Author(s):  
Corey J. Wall ◽  
Richard E. Hanson ◽  
Mark Schmitz ◽  
Jonathan D. Price ◽  
R. Nowell Donovan ◽  
...  

The bimodal Wichita igneous province (WIP) represents the only exposed Ediacaran to Cambrian anorogenic magmatic assemblage present along the buried southern margin of Laurentia and was emplaced during rifting in the Southern Oklahoma Aulacogen prior to Cambrian opening of the southern Iapetus Ocean. Here, we establish the first high-precision U-Pb zircon geochronological framework for the province. Weighted mean 206Pb/238U dates from mafic and felsic rocks in the Wichita Mountains indicate emplacement in a narrow time frame from 532.49 ± 0.12 Ma to 530.23 ± 0.14 Ma. Rhyolite lavas in the Arbuckle Mountains farther east yield weighted mean 206Pb/238U dates of 539.20 ± 0.15 Ma and 539.46 ± 0.13 Ma. These dates for the WIP indicate that magmatism in the Southern Oklahoma Aulacogen postdated the ca. 540 Ma rift-drift transition along the Appalachian margin to the east. Wholerock trace-element and isotopic geochemistry, supplemented by trace elements in zircon, tracks the evolution of magma sources during WIP petrogenesis. These data indicate that initial melting and assimilation of subcontinental mantle lithosphere by an uprising mantle plume were followed by increasing involvement of asthenospheric melts with time. We suggest that upwelling of this plume in the area of the Southern Oklahoma Aulacogen triggered an inboard jump of the spreading center active along the eastern margin of Laurentia, which led to separation of the Precordillera terrane (now located in Argentina) from the Ouachita embayment present in the southern Laurentian margin.


Sign in / Sign up

Export Citation Format

Share Document