Late Holocene fluctuations of Qori Kalis outlet glacier, Quelccaya Ice Cap, Peruvian Andes

Geology ◽  
2014 ◽  
Vol 42 (4) ◽  
pp. 347-350 ◽  
Author(s):  
Justin S. Stroup ◽  
Meredith A. Kelly ◽  
Thomas V. Lowell ◽  
Patrick J. Applegate ◽  
Jennifer A. Howley
1985 ◽  
Vol 7 ◽  
pp. 84-88 ◽  
Author(s):  
W. Berry Lyons ◽  
A. Paul Mayewski ◽  
Lonnie G. Thompson ◽  
Boyd Allen

We present glaciochemical data from a pilot study of two snow-pits from Quelccaya ice cap, Peruvian Andes. These are the first samples to be analyzed from Quelccaya for nitrate and sulfate by ion chromatography (IC), for nitrate-plus-nitrite, reactive silicate and reactive iron by colorimetry, and for sodium by atomic absorption spectrophotometry. The 3 m pits used in this study represent a one year record of mass accumulation and the 29 samples collected provide the first glaciochemical data from this area which can be compared with glaciochemical studies from other locations.Reactive iron, reactive silicate and sodium, and the profiles of >0.63μm microparticles from Thompson and others (1984) are coincident, suggesting that transport and deposition into this area of each species are controlled by similar processes. The common source is probably local, resulting from crustal weathering. In general, the reactive silicate values are lower than those observed in other alpine glacier ice. The highest sulfate and nitrate values were observed in the upper few centimeters of the snow-pit. Most of the sulfate concentrations were less than 3 μM and are similar to values obtained for fresh surface snows from Bolivia (Stallard and Edmond 1981). Since biological gaseous emissions are thought to be the major source of sulfur and nitrogen to the atmosphere over the Amazon basin, the sulfate and nitrate fluctuations may be due to seasonal biological input and/or seasonal shifts in wind direction bringing material to Quelccaya.With only one exception, the colorimetric nitrate-plus-nitrite data were higher than the IC nitrate data. Unfortunately, the IC analyses were conducted 81 d after the colorimetric analyses. The difference between the two data sets could be attributable to the following: (1) the colorimetric technique may yield erroneously high results as suggested for polar ice by Herron (1982), (2) the IC technique yields erroneously low results due, in part, to the possible exclusion of nitrite concentrations, and/or (3) nitrite was lost via biological removal during the 81 d period before the IC analyses. If the IC data are correct, the mean nitrate value is 0.4μΜ (n = 29). This value is similar to those reported from pre-industrial aged polar ice (Herron 1982). If the colorimetric mean value (1.1 μM) is correct, it is similar to colorimetrically determined values from other high-elevation alpine ice (Lyons and Mayewski 1983).


1985 ◽  
Vol 7 ◽  
pp. 84-88 ◽  
Author(s):  
W. Berry Lyons ◽  
A. Paul Mayewski ◽  
Lonnie G. Thompson ◽  
Boyd Allen

We present glaciochemical data from a pilot study of two snow-pits from Quelccaya ice cap, Peruvian Andes. These are the first samples to be analyzed from Quelccaya for nitrate and sulfate by ion chromatography (IC), for nitrate-plus-nitrite, reactive silicate and reactive iron by colorimetry, and for sodium by atomic absorption spectrophotometry. The 3 m pits used in this study represent a one year record of mass accumulation and the 29 samples collected provide the first glaciochemical data from this area which can be compared with glaciochemical studies from other locations. Reactive iron, reactive silicate and sodium, and the profiles of >0.63μm microparticles from Thompson and others (1984) are coincident, suggesting that transport and deposition into this area of each species are controlled by similar processes. The common source is probably local, resulting from crustal weathering. In general, the reactive silicate values are lower than those observed in other alpine glacier ice. The highest sulfate and nitrate values were observed in the upper few centimeters of the snow-pit. Most of the sulfate concentrations were less than 3 μM and are similar to values obtained for fresh surface snows from Bolivia (Stallard and Edmond 1981). Since biological gaseous emissions are thought to be the major source of sulfur and nitrogen to the atmosphere over the Amazon basin, the sulfate and nitrate fluctuations may be due to seasonal biological input and/or seasonal shifts in wind direction bringing material to Quelccaya. With only one exception, the colorimetric nitrate-plus-nitrite data were higher than the IC nitrate data. Unfortunately, the IC analyses were conducted 81 d after the colorimetric analyses. The difference between the two data sets could be attributable to the following: (1) the colorimetric technique may yield erroneously high results as suggested for polar ice by Herron (1982), (2) the IC technique yields erroneously low results due, in part, to the possible exclusion of nitrite concentrations, and/or (3) nitrite was lost via biological removal during the 81 d period before the IC analyses. If the IC data are correct, the mean nitrate value is 0.4μΜ (n = 29). This value is similar to those reported from pre-industrial aged polar ice (Herron 1982). If the colorimetric mean value (1.1 μM) is correct, it is similar to colorimetrically determined values from other high-elevation alpine ice (Lyons and Mayewski 1983).


1982 ◽  
Vol 28 (98) ◽  
pp. 57-69 ◽  
Author(s):  
L. G. Thompson ◽  
J. F. Bolzan ◽  
H. H. Brecher ◽  
P. D. Kruss ◽  
E. Mosley-Thompson ◽  
...  

Abstract During the 1978 and 1979 field seasons, ice thicknesses on the Quelccaya ice cap were determined using a Worden geodetic gravity meter along a west–east traverse and using a mono–pulse ice radar sounder along a north–south traverse. The maximum ice thickness measured was 180 ± 10 m. Based upon the known thickness of the ice cap and the net accumulation, depth–age calculations indicate that an ice core record covering at least the past 600 years and perhaps 1 300 years could be obtained from this tropical ice cap. A topographic map of the Qori Kalis glacier (the largest outlet glacier from the Quelccaya ice cap) has been compiled at a scale of 1:6 000 from 1963 aerial photography. Terrestrial photography of the glacier was obtained in 1978 and coordinates of the edge of the glacier were determined photogrammetrically. Comparison of these two shows that over this 15 year period the glacier has thinned with the terminus retreating more than 100 m. The retreat measured for the Qori Kalis glacier is consistent with the behavior of other tropical glaciers.


1978 ◽  
Vol 20 (82) ◽  
pp. 85-97 ◽  
Author(s):  
Stefan Hastenrath

Abstract During the June-August 1976 Quelccaya ice cap expedition, global, SW↓, and net long-wave radiation, LW↑↓, were measured through several complete day-night cycles, and for a wide range of cloudiness conditions. Field work further included albedo measurements along representative transects across the ice cap and lysimeter-type estimates of ablation. Automatic stations recording wind, temperature and sunshine duration were also installed. Daily totals of SW↓ and LW↑↓ representative of completely clear and overcast days are derived. On this basis, empirical relationships allow the computation of monthly totals of radiation fluxes for an entire year from records of sunshine duration and temperature expected from the automatic stations. The larger part of the plateau is situated above 5400 m and has an albedo mostly in excess of 80%. Sub-freezing temperatures essentially limit ablation to the energetically expensive sublimation. For clear sky, daily totals of SW↓and LW↑↓ are of the order of 312 and 53 W m–2, respectively. With the albedo found, net short-wave radiation SW↑↓ becomes of the same general magnitude as LW↑↓, and the energy left for ablation is near to nil. Cloudiness would reduce both SW↑↓ and LW↑↓, thus largely compensating the effect on the residual net radiation, SWLW↑↓. This is consistent with ablation measurements. Over the larger area of the ice plateau, ablation may be close to zero in a first approximation; some ablation, including melting, takes place near the lower-lying rim of the ice cap, and calving off steep cliffs seems to provide a major mechanism for the disposal of the ice mass.


2015 ◽  
Vol 30 (8) ◽  
pp. 830-840 ◽  
Author(s):  
Justin S. Stroup ◽  
Meredith A. Kelly ◽  
Thomas V. Lowell ◽  
Colby A. Smith ◽  
Samuel A. Beal ◽  
...  

1978 ◽  
Vol 20 (82) ◽  
pp. 85-97 ◽  
Author(s):  
Stefan Hastenrath

AbstractDuring the June-August 1976 Quelccaya ice cap expedition, global, SW↓, and net long-wave radiation, LW↑↓, were measured through several complete day-night cycles, and for a wide range of cloudiness conditions. Field work further included albedo measurements along representative transects across the ice cap and lysimeter-type estimates of ablation. Automatic stations recording wind, temperature and sunshine duration were also installed.Daily totals of SW↓ and LW↑↓ representative of completely clear and overcast days are derived. On this basis, empirical relationships allow the computation of monthly totals of radiation fluxes for an entire year from records of sunshine duration and temperature expected from the automatic stations.The larger part of the plateau is situated above 5400 m and has an albedo mostly in excess of 80%. Sub-freezing temperatures essentially limit ablation to the energetically expensive sublimation. For clear sky, daily totals of SW↓and LW↑↓ are of the order of 312 and 53 W m–2, respectively. With the albedo found, net short-wave radiation SW↑↓ becomes of the same general magnitude as LW↑↓, and the energy left for ablation is near to nil. Cloudiness would reduce both SW↑↓ and LW↑↓, thus largely compensating the effect on the residual net radiation, SWLW↑↓. This is consistent with ablation measurements. Over the larger area of the ice plateau, ablation may be close to zero in a first approximation; some ablation, including melting, takes place near the lower-lying rim of the ice cap, and calving off steep cliffs seems to provide a major mechanism for the disposal of the ice mass.


1982 ◽  
Vol 28 (98) ◽  
pp. 57-69 ◽  
Author(s):  
L. G. Thompson ◽  
J. F. Bolzan ◽  
H. H. Brecher ◽  
P. D. Kruss ◽  
E. Mosley-Thompson ◽  
...  

AbstractDuring the 1978 and 1979 field seasons, ice thicknesses on the Quelccaya ice cap were determined using a Worden geodetic gravity meter along a west–east traverse and using a mono–pulse ice radar sounder along a north–south traverse. The maximum ice thickness measured was 180 ± 10 m. Based upon the known thickness of the ice cap and the net accumulation, depth–age calculations indicate that an ice core record covering at least the past 600 years and perhaps 1 300 years could be obtained from this tropical ice cap.A topographic map of the Qori Kalis glacier (the largest outlet glacier from the Quelccaya ice cap) has been compiled at a scale of 1:6 000 from 1963 aerial photography. Terrestrial photography of the glacier was obtained in 1978 and coordinates of the edge of the glacier were determined photogrammetrically. Comparison of these two shows that over this 15 year period the glacier has thinned with the terminus retreating more than 100 m. The retreat measured for the Qori Kalis glacier is consistent with the behavior of other tropical glaciers.


Sign in / Sign up

Export Citation Format

Share Document