Measurements of diurnal heat exchange on the Quelccaya Ice Cap, Peruvian Andes

1997 ◽  
Vol 62 (1-2) ◽  
pp. 71-78 ◽  
Author(s):  
S. Hastenrath
1985 ◽  
Vol 7 ◽  
pp. 84-88 ◽  
Author(s):  
W. Berry Lyons ◽  
A. Paul Mayewski ◽  
Lonnie G. Thompson ◽  
Boyd Allen

We present glaciochemical data from a pilot study of two snow-pits from Quelccaya ice cap, Peruvian Andes. These are the first samples to be analyzed from Quelccaya for nitrate and sulfate by ion chromatography (IC), for nitrate-plus-nitrite, reactive silicate and reactive iron by colorimetry, and for sodium by atomic absorption spectrophotometry. The 3 m pits used in this study represent a one year record of mass accumulation and the 29 samples collected provide the first glaciochemical data from this area which can be compared with glaciochemical studies from other locations.Reactive iron, reactive silicate and sodium, and the profiles of >0.63μm microparticles from Thompson and others (1984) are coincident, suggesting that transport and deposition into this area of each species are controlled by similar processes. The common source is probably local, resulting from crustal weathering. In general, the reactive silicate values are lower than those observed in other alpine glacier ice. The highest sulfate and nitrate values were observed in the upper few centimeters of the snow-pit. Most of the sulfate concentrations were less than 3 μM and are similar to values obtained for fresh surface snows from Bolivia (Stallard and Edmond 1981). Since biological gaseous emissions are thought to be the major source of sulfur and nitrogen to the atmosphere over the Amazon basin, the sulfate and nitrate fluctuations may be due to seasonal biological input and/or seasonal shifts in wind direction bringing material to Quelccaya.With only one exception, the colorimetric nitrate-plus-nitrite data were higher than the IC nitrate data. Unfortunately, the IC analyses were conducted 81 d after the colorimetric analyses. The difference between the two data sets could be attributable to the following: (1) the colorimetric technique may yield erroneously high results as suggested for polar ice by Herron (1982), (2) the IC technique yields erroneously low results due, in part, to the possible exclusion of nitrite concentrations, and/or (3) nitrite was lost via biological removal during the 81 d period before the IC analyses. If the IC data are correct, the mean nitrate value is 0.4μΜ (n = 29). This value is similar to those reported from pre-industrial aged polar ice (Herron 1982). If the colorimetric mean value (1.1 μM) is correct, it is similar to colorimetrically determined values from other high-elevation alpine ice (Lyons and Mayewski 1983).


1985 ◽  
Vol 7 ◽  
pp. 84-88 ◽  
Author(s):  
W. Berry Lyons ◽  
A. Paul Mayewski ◽  
Lonnie G. Thompson ◽  
Boyd Allen

We present glaciochemical data from a pilot study of two snow-pits from Quelccaya ice cap, Peruvian Andes. These are the first samples to be analyzed from Quelccaya for nitrate and sulfate by ion chromatography (IC), for nitrate-plus-nitrite, reactive silicate and reactive iron by colorimetry, and for sodium by atomic absorption spectrophotometry. The 3 m pits used in this study represent a one year record of mass accumulation and the 29 samples collected provide the first glaciochemical data from this area which can be compared with glaciochemical studies from other locations. Reactive iron, reactive silicate and sodium, and the profiles of >0.63μm microparticles from Thompson and others (1984) are coincident, suggesting that transport and deposition into this area of each species are controlled by similar processes. The common source is probably local, resulting from crustal weathering. In general, the reactive silicate values are lower than those observed in other alpine glacier ice. The highest sulfate and nitrate values were observed in the upper few centimeters of the snow-pit. Most of the sulfate concentrations were less than 3 μM and are similar to values obtained for fresh surface snows from Bolivia (Stallard and Edmond 1981). Since biological gaseous emissions are thought to be the major source of sulfur and nitrogen to the atmosphere over the Amazon basin, the sulfate and nitrate fluctuations may be due to seasonal biological input and/or seasonal shifts in wind direction bringing material to Quelccaya. With only one exception, the colorimetric nitrate-plus-nitrite data were higher than the IC nitrate data. Unfortunately, the IC analyses were conducted 81 d after the colorimetric analyses. The difference between the two data sets could be attributable to the following: (1) the colorimetric technique may yield erroneously high results as suggested for polar ice by Herron (1982), (2) the IC technique yields erroneously low results due, in part, to the possible exclusion of nitrite concentrations, and/or (3) nitrite was lost via biological removal during the 81 d period before the IC analyses. If the IC data are correct, the mean nitrate value is 0.4μΜ (n = 29). This value is similar to those reported from pre-industrial aged polar ice (Herron 1982). If the colorimetric mean value (1.1 μM) is correct, it is similar to colorimetrically determined values from other high-elevation alpine ice (Lyons and Mayewski 1983).


1978 ◽  
Vol 20 (82) ◽  
pp. 85-97 ◽  
Author(s):  
Stefan Hastenrath

Abstract During the June-August 1976 Quelccaya ice cap expedition, global, SW↓, and net long-wave radiation, LW↑↓, were measured through several complete day-night cycles, and for a wide range of cloudiness conditions. Field work further included albedo measurements along representative transects across the ice cap and lysimeter-type estimates of ablation. Automatic stations recording wind, temperature and sunshine duration were also installed. Daily totals of SW↓ and LW↑↓ representative of completely clear and overcast days are derived. On this basis, empirical relationships allow the computation of monthly totals of radiation fluxes for an entire year from records of sunshine duration and temperature expected from the automatic stations. The larger part of the plateau is situated above 5400 m and has an albedo mostly in excess of 80%. Sub-freezing temperatures essentially limit ablation to the energetically expensive sublimation. For clear sky, daily totals of SW↓and LW↑↓ are of the order of 312 and 53 W m–2, respectively. With the albedo found, net short-wave radiation SW↑↓ becomes of the same general magnitude as LW↑↓, and the energy left for ablation is near to nil. Cloudiness would reduce both SW↑↓ and LW↑↓, thus largely compensating the effect on the residual net radiation, SWLW↑↓. This is consistent with ablation measurements. Over the larger area of the ice plateau, ablation may be close to zero in a first approximation; some ablation, including melting, takes place near the lower-lying rim of the ice cap, and calving off steep cliffs seems to provide a major mechanism for the disposal of the ice mass.


1978 ◽  
Vol 20 (82) ◽  
pp. 85-97 ◽  
Author(s):  
Stefan Hastenrath

AbstractDuring the June-August 1976 Quelccaya ice cap expedition, global, SW↓, and net long-wave radiation, LW↑↓, were measured through several complete day-night cycles, and for a wide range of cloudiness conditions. Field work further included albedo measurements along representative transects across the ice cap and lysimeter-type estimates of ablation. Automatic stations recording wind, temperature and sunshine duration were also installed.Daily totals of SW↓ and LW↑↓ representative of completely clear and overcast days are derived. On this basis, empirical relationships allow the computation of monthly totals of radiation fluxes for an entire year from records of sunshine duration and temperature expected from the automatic stations.The larger part of the plateau is situated above 5400 m and has an albedo mostly in excess of 80%. Sub-freezing temperatures essentially limit ablation to the energetically expensive sublimation. For clear sky, daily totals of SW↓and LW↑↓ are of the order of 312 and 53 W m–2, respectively. With the albedo found, net short-wave radiation SW↑↓ becomes of the same general magnitude as LW↑↓, and the energy left for ablation is near to nil. Cloudiness would reduce both SW↑↓ and LW↑↓, thus largely compensating the effect on the residual net radiation, SWLW↑↓. This is consistent with ablation measurements. Over the larger area of the ice plateau, ablation may be close to zero in a first approximation; some ablation, including melting, takes place near the lower-lying rim of the ice cap, and calving off steep cliffs seems to provide a major mechanism for the disposal of the ice mass.


Geology ◽  
2014 ◽  
Vol 42 (4) ◽  
pp. 347-350 ◽  
Author(s):  
Justin S. Stroup ◽  
Meredith A. Kelly ◽  
Thomas V. Lowell ◽  
Patrick J. Applegate ◽  
Jennifer A. Howley

1980 ◽  
Vol 25 (91) ◽  
pp. 69-84 ◽  
Author(s):  
Lonnie G. Thompson

AbstractGlaciological results of the continuing investigations of the Quelccaya ice cap located at lat. 13° 56’ S., long. 70° 50’ W., in the Cordillera Oriental of southern Peru are presented. Ice cores to a depth of 15 m have been retrieved from the summit dome (5650 m), middle dome (5543 m), and south dome (5480 m) and sampled in detail for microparticle, oxygen-isotope, and total-β-activity measurements. Results of these core analyses indicate that although the summit of this ice cap is only 300 m above the annual snow line and the firn is temperate, an interpretable stratigraphic record is preserved. The marked seasonal ice stratigraphy is produced by the marked seasonal variation in regional precipitation. High concentrations of microparticles and β- radioactive material occur during the dry season (May-August). Microparticles deposited during the rainy season are larger than those deposited during the dry season. On the Quelccaya ice cap the most negative δ18O values occur during the warmer rainy season (the opposite occurs in polar regions). The near-surface mean δ value of – 21‰ is remarkably low for this tropical site where the measured mean annual air temperature is – 3°C The seasonality of the microparticles, total β activity, and isotope ratios offers the prospect of a climatic ice-core record from this tropical ice cap.


2016 ◽  
Author(s):  
C. D. Chadwell ◽  
D. R. Hardy ◽  
C. Braun ◽  
H. H. Brecher ◽  
L. G. Thompson

Abstract. Direct measurements of the decadal response of Tropical glaciers to environmental changes are difficult to acquire within their accumulation zones. In 2013, we used dual-frequency kinematic GPS to re-measure the surface elevations at 46 sites, from the margin to across the summit of the Quelccaya Ice Cap, first measured in 1983 using terrestrial surveying methods. In 2015, six additional sites on the western margin, first observed in 1978, were remeasured. Over the past 30 years, the ice cap summit has thinned by 4.41 ± 0.23 m (2σ), with a maximum ice loss at one site near the margin of 63.4 ± 0.34 m (2σ) over 37 years. Using geophysical methods that located the sub-glacial bedrock, we estimate the unit-volume of ice in 1983 along a profile from the 1983 margin to the summit and then the change in volume from 1983 to 2013 by differencing the surface elevations. Over the past 30 years, 21.2 ± 0.3 % (2σ) of the ice unit-volume has been lost suggesting an average annual mass balance rate of −0.5 ± 0.1 m w.e. a−1 (2σ). Increasing air temperature at high elevations of the Andes is likely a major driver of the observed changes. Specifically, within the ablation zone, thinning is likely caused by a 1–2 m w.e. a−1 increase in melting and sublimation above steady-state.Within the accumulation zone, analysis of annual, dry-season summit pits suggests that surface lowering may be caused by both a slight decrease in net snow accumulation and an increase in firnification rate, though this interpretation yet lacks statistical significance. The role of ice flux changes since 1983/4 remains unconstrained, awaiting updated measurements of ice surface velocities across the ice cap.


2008 ◽  
Vol 120 (3) ◽  
pp. 613-617 ◽  
Author(s):  
Douglas R. Hardy ◽  
Spencer P. Hardy
Keyword(s):  
Ice Cap ◽  

1981 ◽  
Vol 27 (97) ◽  
pp. 423-428 ◽  
Author(s):  
Stefan Hastenrath ◽  
Bruce Koci

AbstractDuring the June-July 1979 expedition a large variety of micro-forms was observed at the surface of the Quelccaya ice cap, their altitudinal distribution being primarily controlled by the heat budget. At 5200–5300 m penitentes are best developed, with azimuth orientation and inclination of features conforming to the insolation geometry around local noon. At a westward-facing slope in 5360–5380 m a set of penitentes striking parallel to the contours is superimposed on the pattern dominating at the lower elevations. The ablation forms of penitentes give way to various deposition features above a transition zone around 5400 m in broad agreement with the larger net all-wave radiation and greater importance of melting at lower elevations. The succession of forms with an upward change from surface-parallel plates to elaborate dendritic forms appears to be controlled by the temperature conditions. The conspicuous development of forms encountered during the 1979 expedition appears characteristic of prolonged absence of fresh snow-fall subsequent to a season with abundant precipitation.


Sign in / Sign up

Export Citation Format

Share Document