scholarly journals Breaching of strike-slip faults and successive flooding of pull-apart basins to form the Gulf of California seaway from ca. 8–6 Ma

Geology ◽  
2018 ◽  
Vol 46 (8) ◽  
pp. 695-698 ◽  
Author(s):  
Paul J. Umhoefer ◽  
Michael H. Darin ◽  
Scott E. K. Bennett ◽  
Lisa A. Skinner ◽  
Rebecca J. Dorsey ◽  
...  
2020 ◽  
Author(s):  
Georgios-Pavlos Farangitakis ◽  
Kenneth J.W. McCaffrey ◽  
Ernst Willingshofer ◽  
Lara M. Kalnins ◽  
Jeroen van Hunen ◽  
...  

<p>Pull-apart basins are structural features closely linked to the interactions between strike-slip and extensional tectonics. Their morphology and structural evolution are determined by factors such as extension rate, width/length ratio, or changes in the extension direction. In this work, we focus on changes in extension direction during the formation of a pull-apart basin as a basis to further understand the evolution of the northern Gulf of California through a series of physical analogue modelling experiments.</p><p>We investigate the effect of a variation in the basin extension direction, using a two-layer ductile-brittle configuration to simulate continental crust rheology. Pull-apart basin development is accomplished by displacing a plastic sheet at the bottom of the experiment, with pre-cut geometry resembling interconnected rift and strike-slip segments, orthogonal to the evolving rift axes. Subsequently, we change the relative motion of the base plate by 7<sup>o</sup> in accordance with the reconstructed plate vector from the Gulf of California. Oblique extension continues on this new plate motion vector to the end of the experiment.</p><p>To analyse the results, we inserted the model cross-sections in a seismic interpretation software generating 3D interpretations for faulting and sedimentary thickness. Preliminary results show that the shift in the direction of plate motion produces sigmoidal oblique slip faults that become normal when deformation adjusts to the new plate motion vector. Furthermore, it appears that sediment distribution is controlled heavily by the relative plate rotation.</p><p>Finally, we compare our observations with seismic reflection images, sedimentary package thicknesses and fault interpretations from the pull-apart structure in the Northern Gulf of California transtensional margin, where we find good agreement between model and nature.</p>


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2020 ◽  
Vol 3 (2) ◽  
pp. 781-790
Author(s):  
M. Rizwan Akram ◽  
Ali Yesilyurt ◽  
A.Can. Zulfikar ◽  
F. Göktepe

Research on buried gas pipelines (BGPs) has taken an important consideration due to their failures in recent earthquakes. In permanent ground deformation (PGD) hazards, seismic faults are considered as one of the major causes of BGPs failure due to accumulation of impermissible tensile strains. In current research, four steel pipes such as X-42, X-52, X-60, and X-70 grades crossing through strike-slip, normal and reverse seismic faults have been investigated. Firstly, failure of BGPs due to change in soil-pipe parameters have been analyzed. Later, effects of seismic fault parameters such as change in dip angle and angle between pipe and fault plane are evaluated. Additionally, effects due to changing pipe class levels are also examined. The results of current study reveal that BGPs can resist until earthquake moment magnitude of 7.0 but fails above this limit under the assumed geotechnical properties of current study. In addition, strike-slip fault can trigger early damage in BGPs than normal and reverse faults. In the last stage, an early warning system is proposed based on the current procedure.&amp;nbsp;


2019 ◽  
Vol 45 (5) ◽  
pp. 507-512
Author(s):  
Héctor Pérez-Puig ◽  
Gisela Heckel ◽  
Lorayne Meltzer

2018 ◽  
Vol 44 (3) ◽  
pp. 293-298
Author(s):  
Fernando R. Elorriaga-Verplancken ◽  
Patricia Meneses ◽  
Abraham Cárdenas-Llerenas ◽  
Wayne Phillips ◽  
Abel de la Torre ◽  
...  

2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


Sign in / Sign up

Export Citation Format

Share Document