Sea-level driven acceleration in coastal forest retreat

Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1151-1155 ◽  
Author(s):  
Nathalie W. Schieder ◽  
Matthew L. Kirwan

Abstract Ghost forests, consisting of dead trees adjacent to marshes, are a striking feature of low-lying coastal and estuarine landscapes, and they represent the migration of coastal ecosystems with relative sea-level rise (RSLR). Although ghost forests have been observed along many coastal margins, rates of ecosystem change and their dependence on RSLR remain poorly constrained. Here, we reconstructed forest retreat rates using sediment coring and historical imagery at five sites along the Mid-Atlantic coast of the United States, a hotspot for accelerated RSLR. We found that the elevation of the marsh-forest boundary generally increased with RSLR over the past 2000 yr, and that retreat accelerated concurrently with the late 19th century acceleration in global sea level. Lateral retreat rates increased through time for most sampling intervals over the past 150 yr, and modern lateral retreat rates are 2 to 14 times faster than pre-industrial rates at all sites. Substantial deviations between RSLR and forest response are consistent with previous observations that episodic disturbance facilitates the mortality of adult trees. Nevertheless, our work suggests that RSLR is the primary determinant of coastal forest extent, and that ghost forests represent a direct and prominent visual indicator of climate change.

1911 ◽  
Vol 5 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Robert Lansing

The Arbitral Tribunal of the Permanent Court at The Hague, by its award of the 7th of last September, in the case of the North Atlantic Coast Fisheries, brought to a close a controversy which in its various phases has been an almost constant source of vexatious dispute between the United States and Great Britain for the past seventy years.A treaty, granting exceptional rights, such as that which this Tribunal was called upon to consider, is peculiarly susceptible to different interpretations as the course of time brings new conditions not contemplated by its negotiators. The relations of the parties are changed. A liberty which at the date of the treaty was considered indispensable may become worthless, while one which was deemed insignificant may in years assume a place of vital importance to the beneficiaries under the grant. This change of conditions and of the value of rights has been especially true of the liberties acquired by the United States for its inhabitants under the first article of the Treaty of October 20, 1818.


Geology ◽  
2009 ◽  
Vol 37 (12) ◽  
pp. 1115-1118 ◽  
Author(s):  
S. E. Engelhart ◽  
B. P. Horton ◽  
B. C. Douglas ◽  
W. R. Peltier ◽  
T. E. Tornqvist

Science ◽  
1982 ◽  
Vol 215 (4540) ◽  
pp. 1611-1614 ◽  
Author(s):  
V. GORNITZ ◽  
S. LEBEDEFF ◽  
J. HANSEN

Author(s):  
Keven Roy ◽  
Nicole S. Khan ◽  
Timothy A. Shaw ◽  
Robert E. Kopp ◽  
Benjamin P. Horton

Rising global sea level, a consequence of climate change, results from an increase in the world ocean’s water volume and mass. Recent climate warming is responsible for producing the highest rate of global average sea-level rise of the past few millennia, and this rate will accelerate through the 21st century and beyond, exposing low-lying islands and coastal regions to significant flood risks. The flood risks can be compounded or diminished locally because changes in sea level are not uniform. In this review, we briefly discuss ice sheets as drivers of global and local sea levels, and how they could evolve under modern climate change. We underline some of the impacts of sea level change on coastal communities, and emphasize that local sea-level projections can be very different from estimates of the global average.


2021 ◽  
Author(s):  
Matthis Auger ◽  
Jean-Baptiste Sallée ◽  
Pierre Prandi

<p>Subtle changes in the Southern Ocean subpolar ocean circulation patterns can lead to major changes in the global overturning circulation, as well as for floating ice-shelves with critical implications for global sea-level. It is therefore crucial to carefully understand Antarctic polar ocean circulation, but the lack of ocean observation has considerably blocked our advance in this field in the past.</p><p>In this study we benefit from a new high-resolution Sea Level Anomaly (SLA) product that has been specifically constructed to document sea-level in the ice-covered Southern Ocean. This product combines up to 3 satellite altimetry missions to map SLA data daily on an equal-area grid, including the ice-covered areas of the ocean from 2013 to 2019.</p><p>Results suggest that we can map ocean features with unprecedented resolution for the region. We characterize the main features of the subpolar Southern Ocean SLA and circulation seasonal cycle, being composed of three main modes of variability, significantly impacting the dynamics of the region. We explore how they are linked with atmospheric and sea-ice forcings. Dynamics at smaller scales are investigated, by identifying the properties of mesoscale variability where possible.</p>


The Holocene ◽  
2021 ◽  
pp. 095968362110499
Author(s):  
Kathleen Rodrigues ◽  
Frank W Stapor ◽  
William J Rink ◽  
James S Dunbar ◽  
Glen Doran

The Cape Canaveral Peninsula is the largest Holocene coastal sand deposit composed of beach ridges on the Atlantic coast of Florida. It is composed of 16 beach-ridge sets that are separated by erosional surfaces. Despite its prominence as a Holocene coastal depocenter, there are a limited amount of chronological data constraining the timing of its formation. In this study, we apply optically stimulated luminescence (OSL) dating on sand-sized quartz and radiocarbon dating on individual marine shells to develop a refined chronology of the Cape Canaveral beach-ridge plain with particular focus on constraining the depositional age of the northwesterly-most, and geographically oldest, beach-ridge set on the peninsula. We obtain an average OSL age of 5680 ± 240 years ( n = 4) for the initiation of coastal deposition at Cape Canaveral. The new ages, and the organization of beach ridges into 16 distinct sets indicates that the Cape Canaveral beach-ridge plain experienced an ~5700-year history of alternating deposition and erosion, with 75% of present-day Cape Canaveral (Beach-ridge Sets 5–16) deposited over the past 2000 years and Beach-ridge Sets 8–16 comprising 50% of the area over the past 1000 years. Because the minimum swale elevations of the ~5700-year Beach-ridge Set 1, and those of all the younger beach-ridge sets, are within several decimeters of present-day mean higher high water, we hypothesize that all the beach ridges present at Cape Canaveral could have been deposited at or within decimeters of present-day sea level. There is no evidence for Holocene “highstand” events over the past 5700 years in the published sea level curves from northeast and south Florida, which are based on subsurface estuarine foraminifera/leaf litter and mangrove peat data, respectively. This dichotomy illustrates the need to integrate both subaerial and subsurface data to produce a more realistic Holocene sea-level curve for the southeastern United States.


Oceanography ◽  
2011 ◽  
Vol 24 (2) ◽  
pp. 70-79 ◽  
Author(s):  
Simon Engelhart ◽  
Benjamin Horton ◽  
Andrew Kemp

2020 ◽  
Vol 33 (9) ◽  
pp. 3745-3769 ◽  
Author(s):  
Jianjun Yin ◽  
Stephen M. Griffies ◽  
Michael Winton ◽  
Ming Zhao ◽  
Laure Zanna

AbstractStorm surge and coastal flooding caused by tropical cyclones (hurricanes) and extratropical cyclones (nor’easters) pose a threat to communities along the Atlantic coast of the United States. Climate change and sea level rise are altering the statistics of these extreme events in a rather complex fashion. Here we use a fully coupled global weather/climate modeling system (GFDL CM4) to study characteristics of extreme daily sea level (ESL) along the U.S. Atlantic coast and their response to global warming. We find that under natural weather processes, the Gulf of Mexico coast is most vulnerable to storm surge and related ESL. New Orleans is a striking hotspot with the highest surge efficiency in response to storm winds. Under a 1% per year atmospheric CO2 increase on centennial time scales, the anthropogenic signal in ESL is robust along the U.S. East Coast. It can emerge from the background variability as soon as in 20 years, or even before global sea level rise is taken into account. The regional dynamic sea level rise induced by the weakening of the Atlantic meridional overturning circulation facilitates this early emergence, especially during wintertime coastal flooding associated with nor’easters. Along the Gulf Coast, ESL is sensitive to the modification of hurricane characteristics under the CO2 forcing.


2018 ◽  
Author(s):  
Simon Engelhart ◽  
Benjamin Horton ◽  
Bruce Douglas ◽  
W. Peltier ◽  
Torbjorn Tornqvist

Sign in / Sign up

Export Citation Format

Share Document