scholarly journals Response of Storm-Related Extreme Sea Level along the U.S. Atlantic Coast to Combined Weather and Climate Forcing

2020 ◽  
Vol 33 (9) ◽  
pp. 3745-3769 ◽  
Author(s):  
Jianjun Yin ◽  
Stephen M. Griffies ◽  
Michael Winton ◽  
Ming Zhao ◽  
Laure Zanna

AbstractStorm surge and coastal flooding caused by tropical cyclones (hurricanes) and extratropical cyclones (nor’easters) pose a threat to communities along the Atlantic coast of the United States. Climate change and sea level rise are altering the statistics of these extreme events in a rather complex fashion. Here we use a fully coupled global weather/climate modeling system (GFDL CM4) to study characteristics of extreme daily sea level (ESL) along the U.S. Atlantic coast and their response to global warming. We find that under natural weather processes, the Gulf of Mexico coast is most vulnerable to storm surge and related ESL. New Orleans is a striking hotspot with the highest surge efficiency in response to storm winds. Under a 1% per year atmospheric CO2 increase on centennial time scales, the anthropogenic signal in ESL is robust along the U.S. East Coast. It can emerge from the background variability as soon as in 20 years, or even before global sea level rise is taken into account. The regional dynamic sea level rise induced by the weakening of the Atlantic meridional overturning circulation facilitates this early emergence, especially during wintertime coastal flooding associated with nor’easters. Along the Gulf Coast, ESL is sensitive to the modification of hurricane characteristics under the CO2 forcing.

Author(s):  
Kristian Breili ◽  
Matthew James Ross Simpson ◽  
Erlend Klokkervold ◽  
Oda Roaldsdotter Ravndal

Abstract. Using new high accuracy Light Detection and Ranging elevation data we generate coastal flooding maps for Norway. Thus far, we have mapped ~ 80 % of the coast, for which we currently have data of sufficient accuracy to perform our analysis. Although Norway is generally at low risk from sea-level rise largely owing to its steep topography, the maps presented here show that on local scales, many parts of the coast are potentially vulnerable to flooding. There is a considerable amount of infrastructure at risk along the relatively long and complicated coastline. Nationwide we identify a total area of 400 km2, 105,000 buildings, and 510 km of roads that are at risk of flooding from a 200 year storm-surge event at present. These numbers will increase to 610 km2, 137,000, and 1340 km with projected sea-level rise to 2090 (95th percentile of RCP8.5 as recommended in planning). We find that some of our results are likely biased high owing to erroneous mapping (at least for lower water levels close to the tidal datum which delineates the coastline). A comparison of control points from different terrain types indicates that the elevation model has a root mean square error of 0.26 m and is the largest source of uncertainty in our mapping method. The coastal flooding maps and associated statistics are freely available, and alongside the development of coastal climate services, will help communicate the risks of sea-level rise and storm surge to stakeholders. This will in turn aid coastal management and climate adaption work in Norway.


2020 ◽  
Author(s):  
Sida Li ◽  
Thomas Wahl ◽  
David Jay ◽  
Stefan Talke ◽  
Lintao Liu

<p>Nuisance flooding (NF) or high tide flooding describes minor nondestructive flooding which can nonetheless cause substantial negative socio-economic impacts to coastal communities. The frequency of NF events has increased and accelerated over the past decades along the U.S. coast, leading to changes ranging from 300% to 900%. This is mainly a result of sea level rise reducing the gap between high tidal datum and flood thresholds. While long-term relative sea level rise is the main driver for the increased number of NF events, other factors such as variability in the Gulf stream, the storm climate, and infragravity waves can also contribute. Another important driver that is often overlooked is related to changes in coastal and estuary tides, through secular trends in the amplitudes of major tidal constituents. In this presentation we assess the role of tidal changes in modulating the frequency of NF events along the U.S. coastline. We analyze hourly records from 49 U.S. tide gauges for which the National Weather Service has defined NF thresholds. We find that (1) overall across all tide gauges the number of NF days has increased since 1950 due to changes in coastal tides, adding up to 100 NF days in recent years (on top of the increase due to relative sea level rise), (2) more tide gauges experience an increase in NF events than a decrease due to changes in tides, (3) tide gauges in major estuaries which have undergone major anthropogenic alterations experience the strongest changes; in Wilmington (Cape Fear estuary), for example, 10-40% of NF events in recent years can be attributed to tidal changes. </p>


Geology ◽  
2009 ◽  
Vol 37 (12) ◽  
pp. 1115-1118 ◽  
Author(s):  
S. E. Engelhart ◽  
B. P. Horton ◽  
B. C. Douglas ◽  
W. R. Peltier ◽  
T. E. Tornqvist

2020 ◽  
Vol 163 (1) ◽  
pp. 317-335
Author(s):  
Wanyun Shao ◽  
Hamed Moftakhari ◽  
Hamid Moradkhani

2015 ◽  
Vol 7 (2) ◽  
pp. 118-132
Author(s):  
Yosuke Adachi

Abstract Sea level rise (SLR) is a topic of increasing importance, as global warming continues to drive it at the global level and other factors such as land subsidence also affect it at the local level. Economic and human-based approaches have been taken to assess its impact on society. However, quantifications of the effect of SLR on mortality have not been extensive. Therefore, the objective of this study is to quantify the relative impact of SLR on mortality due to extreme coastal flooding for 2011–2100. First, an empirical relationship between annual storm surges caused by tropical cyclones (TCs) and associated fatalities is established. Next, a conceptual framework is introduced to measure rises in sea level due to gradual SLR and temporary storm surges on a common scale called cumulatively raised sea level. An analysis applying SLR projections to this framework shows that, in addition to the deaths that occur because of coastal flooding due to TCs, at least 84–139 deaths due to extra coastal flooding caused by SLR may occur in the United States by 2100, in the absence of coastal population changes, adaptation, and protection failure. Higher-than-expected rates of SLR due to increased discharge from polar glaciers will raise this estimate to 277. Protection failure will also result in more fatalities. Conversely, adaptation, even when combined with coastal population increases, may lead to fewer fatalities.


2013 ◽  
Vol 118 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Tal Ezer ◽  
Larry P. Atkinson ◽  
William B. Corlett ◽  
Jose L. Blanco

Author(s):  
Paul Chinowsky ◽  
Jacob Helman

The national study analyzes sea level rise (SLR) impacts based on 36 different SLR and storm surge scenarios across 5.7 million geographic locations and 3 time periods. Taking an approach based on engineering design guidelines and current cost estimates, the study details projected cost impacts for states, counties, and cities. These impacts are presented from multiple perspectives including total cost, cost per-capita, and cost per-square mile. The purpose of the study is to identify specific locations where infrastructure is vulnerable to rising sea levels. The study finds that Sea Level Rise (SLR) and minimal storm surge is a $400 billion threat to the United States by 2040 that includes a need for at least 50,000 miles of protective barriers. The research is limited in its scope to protecting coastal infrastructure with sea walls. Additional methods exist and may be appropriate in individual situations. The study is original in that it is a national effort to identify infrastructure that is vulnerable as well as the cost associated with protecting this infrastructure.


2018 ◽  
Author(s):  
Simon Engelhart ◽  
Benjamin Horton ◽  
Bruce Douglas ◽  
W. Peltier ◽  
Torbjorn Tornqvist

2021 ◽  
Author(s):  
Jeremy Johnston ◽  
Felicio Cassalho ◽  
Tyler Miesse ◽  
Celso Ferreira

Abstract Much of the United States Atlantic coastline continues to subside due to post glacial settlement and ground water depletion. Combined with sea level rise (SLR), this contributes to a larger relative rate of SLR regionwide. In this work, we utilize the ADvanced CIRCulation model to simulate storm surges across coastal North Carolina. Simulations of recent Hurricanes Irene (2011) and Matthew (2016) are performed considering SLR projections and land subsidence estimates for the year 2100. The model is validated against historic water level observations with generally strong agreement (mean R2 0.81, RMSE 10–31 cm). At current rates of subsidence, storm surge susceptible regions increase on the order of 30–40% by 2100 relative to near-present day conditions. Flood water redistribution leaves low-lying areas especially vulnerable, as many of which also experience increased land subsidence. Combined with SLR projections, results project more than a doubling of areal flood extent for Hurricane Irene from ~ 2,000 km2 (2011) to 5,000 km2 (2100, subsidence + 74 cm), and more than a 3-fold increase ~ 1,400 km2 (2016) to 4,900 km2 (2100, subsidence + 74 cm) for Hurricane Matthew. The expected inundation increases have substantial implications for communities and ecosystems located in coastal North Carolina.


2018 ◽  
Vol 52 (2) ◽  
pp. 92-105 ◽  
Author(s):  
Luca Castrucci ◽  
Navid Tahvildari

AbstractHampton Roads is a populated area in the United States Mid-Atlantic region that is highly affected by sea level rise (SLR). The transportation infrastructure in the region is increasingly disrupted by storm surge and even minor flooding events. The purpose of this study is to improve our understanding of SLR impacts on storm surge flooding in the region. We develop a hydrodynamic model to study the vulnerability of several critical flood-prone neighborhoods to storm surge flooding under several SLR projections. The hydrodynamic model is validated for tide prediction, and its performance in storm surge simulation is validated with the water level data from Hurricane Irene (2011). The developed model is then applied to three urban flooding hotspots located in Norfolk, Chesapeake, and the Isle of Wight. The extent, intensity, and duration of storm surge inundation under different SLR scenarios are estimated. Furthermore, the difference between the extent of flooding as predicted by the hydrodynamic model and the “bathtub” approach is highlighted.


Sign in / Sign up

Export Citation Format

Share Document