Salt tectonics in the Eastern Mediterranean Sea: Where a giant delta meets a salt giant

Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 134-138 ◽  
Author(s):  
Elchanan Zucker ◽  
Zohar Gvirtzman ◽  
Josh Steinberg ◽  
Yehouda Enzel

Abstract The circum-Nile deformation belt (CNDB) demonstrates the interaction between a giant delta and a giant salt body. The semi-radial shape of the CNDB is commonly interpreted as the product of salt squeezing out from under the Nile Delta. We demonstrate, however, that this is not the dominant process, because the delta and its deep-sea fan do not reach the deep-basin salt. The distal part of the deep-sea fan overlies the edge of the salt giant, but squeezing this edge (<150 m thickness) should have had only little effect on the regional salt tectonics. Only on the easternmost side of the deep-sea fan, toward the Levant Basin, does the squeeze-out model work. Here, the delta front reaches the thick salt layer and differential loading promotes basinward salt flow, even upslope. On the western side of the delta, downslope gliding of the sediment-salt sequence toward the Herodotus Basin is driven by the elevation gradient toward the deepest part of the basin. Our analysis shows that salt squeezing by differential loading was previously overestimated in the Eastern Mediterranean and raises the need to carefully map the boundary of salt basins prior to any interpretation. This conclusion is especially relevant in young basins where deltas and shelves have not propagated far enough into the basin.

2020 ◽  
Author(s):  
Elchanan Zucker ◽  
Yechiel Ben Zeev ◽  
Yehouda Enzel ◽  
Zohar Gvirtzman

<p>In the Late 1970’s, a slope-parallel normal fault system has been recognized offshore Israel. ~25 years later, a system of folds and thrust faults was recognized farther west in the deep Levant Basin. Initially, this combination of updip extension and downdip contraction seemed to fit the classic paradigm known from other salt basins around the world in which sediments overriding salt glide basinward and produce extension upslope and contraction in the deep basin. However, later studies in the Levant Basin showed that the shapes of the updip extension system and the downdip contractional system do not match; the updip normal faults are trending to the NNE, whereas the deep basin folds are trending to the NW and even to the WNW.</p><p>We propose that while extension of the Levant continental slope expresses basinward gliding, the deep basin shortening belongs to the circum-Nile deformation belt (CNDB) that was previously interpreted as an expression of salt squeezing-out from under the Nile Delta.</p><p>However, careful mapping of the salt-overburden thicknesses around the Nile delta and its submarine cone clearly shows that in the majority of the study area salt squeeze-out cannot be the dominant driving force, because the thick delta load (nearshore) does not reach the thick basin salt (distal basin). The dominating driving force in the western side of the Nile Delta towards the Herodotus Basin, as well as along the Levant continental margin, is simply the elevation gradient towards the lowest place leading to downslope gliding of the sediment-salt sequence.</p><p>Only in the easternmost side of the delta, towards the Levant Basin, does the squeeze-out model work. Here, the delta front covers a thick salt layer and differential loading promotes basinward salt flow. Particularly interesting is the southeast corner of the Mediterranean where the CNDB, driven by differential loading (salt squeezing), is pushed against the Levant margin belt, driven by downslope gliding. By improving the chrono-stratigraphy of the Levant Basin we show that during the first 2.5 my after salt deposition only minor deformation occurred. Then, tilting of the Levant margin (inland uplift) initiated downward gliding and rapid extension; and only ~1 my later the CNDB reached the Levant Basin and started suppressing the downward gliding.</p><p>In a wider perspective our analysis shows that the role of salt squeezing by differential loading was previously overestimated in the Eastern Mediterranean and raises the need to carefully map the boundary of the salt basins prior to any interpretation. This conclusion is especially relevant to young basins where deltas and shelves have not propagated far enough into the basin.</p>


2020 ◽  
Author(s):  
Yael Sagy ◽  
Oz Dror ◽  
Michael Gardosh ◽  
Moshe Reshef

<p>The progradation of the Nile River Delta and the thick (~1500m) Sinai-Israel shelf since the Pliocene provide a world class source to sink system feeding a deep (>1.5 km) siliciclastic basin.  The general agreement that the Pliocene-to-Recent succession originates from the Nile Delta dispersing sediments via a system of counterclockwise currents does not reveal how the sediments were transported to the deep basin. Particularly, how sediments originating from the Nile Delta could have bypassed the ~50 km wide Sinai-Israeli shelf. Here, we examine the various sources that contributed to the accumulation of the Pliocene-to-Recent succession in the deep Levant basin, and the temporal and spatial contribution of each source. The analysis of a unique seismic data set covering the shelf, slope and deep basin enable us to track submarine sediment transport systems.</p><p>Following attribute analysis of the seismic volumes we map channel sets, analyze their morphological features and interpret their erosional and depositional patterns. Direction flow maps indicate that sediments sources vary from eastward remnant Arabian drainage network at the onset of the Pliocene, to direct Nilotic origin during the Pliocene. Since the Late Pleistocene reworked sediments, deriving from the Israeli shelf and northern Sinai provide a major source to the deep basin. Furthermore, our results demonstrate an increase in channel’s complexity since the Early Pliocene to Recent suggesting a gradual transition from sporadic submarine flow events, carrying fewer sediments to the deep basin at the Early Pliocene, to more frequent events during the Late Pleistocene-to-Recent characterized by an increase in sediment load. The gradual increase of channel complexity from Pliocene-to-Recent is discordant to the general trend of sea-level fluctuation, suggesting that sea-level has a minor effect on sediment accumulation in the deep basin. We propose that the balance between the northward prograding Nile Cone and the longshore currents building the Sinai-Israeli shelf dictate siliciclastic accumulation in the southeastern Mediterranean basin as well as the paleogeography of its margin.</p>


2000 ◽  
Vol 174 (1) ◽  
pp. 111-129 ◽  
Author(s):  
Virginie Gaullier ◽  
Yossi Mart ◽  
Gilbert Bellaiche ◽  
Jean Mascle ◽  
Bruno C. Vendeville ◽  
...  
Keyword(s):  
Deep Sea ◽  

Geobiology ◽  
2011 ◽  
Vol 9 (4) ◽  
pp. 330-348 ◽  
Author(s):  
S. GRÜNKE ◽  
J. FELDEN ◽  
A. LICHTSCHLAG ◽  
A.-C. GIRNTH ◽  
D. DE BEER ◽  
...  

2014 ◽  
Vol 347 ◽  
pp. 27-42 ◽  
Author(s):  
Miriam Römer ◽  
Heiko Sahling ◽  
Thomas Pape ◽  
Christian dos Santos Ferreira ◽  
Frank Wenzhöfer ◽  
...  

2020 ◽  
Author(s):  
Cécile L. Blanchet ◽  
Rik Tjallingii ◽  
Anja M. Schleicher ◽  
Stefan Schouten ◽  
Martin Frank ◽  
...  

Abstract. Ocean deoxygenation is a rising threat to marine ecosystems and food resources under present climate warming conditions. Organic-rich sapropel layers deposited in the Mediterranean Sea provide a natural laboratory to study the processes that have controlled the changes in seawater oxygen levels in the recent geological past. Our study is based on three sediment cores spanning the last 10 thousand years (10 kyr BP) and located on a bathymetric transect offshore the western distributaries of the Nile delta. These cores are partly to continuously laminated in the sections recording sapropel S1, which is indicative of bottom-water anoxia above the western Nile deep-sea fan. We used a combination of microfacies analyses and inorganic and organic geochemical measurements to reconstruct changes in oxygenation conditions at seasonal to millennial time-scales. The regular alternations of detrital, biogenic and chemogenic sublayers in the laminated sequences are interpreted in terms of seasonal changes. Our microfacies analyses reveal distinct summer floods and subsequent plankton blooms preceding the deposition of inorganic carbonates formed in the water-column during spring-early summer. The isotopic signature of these carbonates suggests year-round anoxic to euxinic bottom waters resulting in high levels of anaerobic remineralisation of organic matter and highlights their potential to reconstruct seawater chemistry at times when benthic fauna was absent. Synchronous changes in terrigenous input, primary productivity and past oxygenation dynamics on millennial time-scales obtained by our multi-proxy study show that runoff-driven eutrophication played a central role in driving rapid changes in oxygenation state of the entire Levantine Basin. Rapid fluctuations of oxygenation conditions in the upper 700 m water depth occurred above the Nile deep-sea fan between 10 and 6.5 ka BP while deeper cores recorded more stable anoxic conditions. These findings are further supported by other regional records and reveal time-transgressive changes in oxygenation state driven by rapid changes in primary productivity during a period of long-term deep-water stagnation.


2021 ◽  
Author(s):  
Davide Oppo ◽  
Sian Evans ◽  
Christopher A-L Jackson ◽  
David Iacopini ◽  
SM Mainul Kabir ◽  
...  

<p>Hydrocarbon escape systems can be regionally active on multi-million-year timescales. However, reconstructing the timing and evolution of repeated escape events can be challenging because their expression may overlap in time and space. In the northern Levant Basin, eastern Mediterranean, distinct fluid escape episodes from common leakage points formed discrete, cross-evaporite fluid escape pipes, which are preserved in the stratigraphic record due to the coeval Messinian salt tectonics.</p><p>The pipes consistently originate at the crest of prominent sub-salt anticlines, where thinning and hydrofracturing of overlying salt permitted focused fluid flow. Sequential pipes are arranged in several kilometers-long trails that were progressively deformed due to basinward gravity-gliding of salt and its overburden. The correlation of the oldest pipes within 12 trails suggests that margin-wide fluid escape started in the Late Pliocene/Early Pleistocene, coincident with a major phase of uplift of the Levant margin. We interpret that the consequent transfer of overpressure from the deeper basin areas triggered seal failure and cross-evaporite fluid flow. We infer that other triggers, mainly associated with the Messinian Salinity Crisis and compressive tectonics, played a secondary role in the northern Levant Basin. Further phases of fluid escape are unique to each anticline and, despite a common initial cause, long-term fluid escape proceeded independently according to structure-specific characteristics, such as the local dynamics of fluid migration and anticline geometry.</p><p>Whereas cross-evaporite fluid escape in the southern Levant Basin is mainly attributed to the Messinian Salinity Crisis and compaction disequilibrium, we argue that these mechanisms do not apply to the northern Levant Basin; here, fluid escape was mainly driven by the tectonic evolution of the margin. Within this context, our study shows that the causes of cross-evaporite fluid escape can vary over time, act in synergy, and have different impacts in different areas of large salt basins.</p>


Sign in / Sign up

Export Citation Format

Share Document