scholarly journals Zircon (U-Th)/He thermochronology reveals pre-Great Unconformity paleotopography in the Grand Canyon region, USA

Geology ◽  
2021 ◽  
Author(s):  
B.A. Peak ◽  
R.M. Flowers ◽  
F.A. Macdonald ◽  
J.M. Cottle

The Great Unconformity is an iconic geologic feature that coincides with an enigmatic period of Earth’s history that spans the assembly and breakup of the supercontinent Rodinia and the Snowball Earth glaciations. We use zircon (U-Th)/He thermochronology (ZHe) to explore the erosion history below the Great Unconformity at its classic Grand Canyon locality in Arizona, United States. ZHe dates are as old as 809 ± 25 Ma with data patterns that differ across both long (~100 km) and short (tens of kilometers) spatial wavelengths. The spatially variable thermal histories implied by these data are best explained by Proterozoic syndepositional normal faulting that induced differences in exhumation and burial across the region. The data, geologic relationships, and thermal history models suggest Neoproterozoic rock exhumation and the presence of a basement paleo high at the present-day Lower Granite Gorge synchronous with Grand Canyon Supergroup deposition at the present-day Upper Granite Gorge. The paleo high created a topographic barrier that may have limited deposition to restricted marine or nonmarine conditions. This paleotopographic evolution reflects protracted, multiphase tectonic activity during Rodinia assembly and breakup that induced multiple events that formed unconformities over hundreds of millions of years, all with claim to the title of a “Great Unconformity.”

2021 ◽  
Author(s):  
Kalin McDannell ◽  
C. Keller ◽  
William Guenthner ◽  
Peter Zeitler ◽  
David Shuster

The origin of the phenomenon known as the Great Unconformity has been a fundamental yet unresolved problem in the geosciences for over a century. Recent hypotheses advocate either global continental exhumation of more than 3–4 km during Cryogenian (717–635 Ma) snowball Earth glaciations, or alternatively, diachronous episodic exhumation throughout the Neoproterozoic (1000–540 Ma) due to plate tectonic reorganization from supercontinent Rodinia assembly and breakup. To test these hypotheses, the temporal pattern of Neoproterozoic thermal histories were evaluated for four North American locations using previously published medium-to-low temperature thermochronology and geologic information. We present inverse time-temperature simulations within a Bayesian modelling framework that record a consistent signal of relatively rapid, high magnitude cooling of ~120–200°C interpreted as erosional exhumation of upper crustal basement during the Cryogenian. These models imply widespread, synchronous cooling consistent with at least ~3–5 km of unroofing during snowball Earth glaciations, but also demonstrate that plate tectonic drivers, with the potential to cause both exhumation and burial, may have significantly influenced the thermal history in regions that were undergoing deformation concomitant with glaciation. In the cratonic interior, however, glaciation remains the only plausible mechanism that satisfies the required timing, magnitude, and broad spatial pattern of continental erosion revealed by our thermochronological inversions. To obtain a full picture of the extent and synchroneity of such erosional exhumation, studies on stable cratonic crust below the Great Unconformity must be repeated on all continents.


1969 ◽  
Vol 6 (4) ◽  
pp. 903-910 ◽  
Author(s):  
John T. Hollin

If they had occurred, ice-sheet surges would have caused sea-level rises of up to 50 m from Gondwanaland and say 20 m from Antarctica. The rises would have taken 100 years or much less, and the sub sequent falls would have taken 50 000 years or so, as the ice built up again. Such rises may explain the extensive (hundreds of miles ?) and sharp (submergence time 4 years ?) coal – marine shale contacts in the Carboniferous cyclothems. The chief rival explanation for these contacts is sudden subsidence. Tests should show (1) if such contacts are better correlated with periods of glaciation or with areas of tectonic activity, (2) how extensive the contacts really are, (3) if there is any evidence of erosion during sea-level falls, (4) if the amplitudes and periods of the cycles fit surges or subsidence, (5) how fast the submergences were, and (6) if any coolings began at the contacts. Wilson suggests that in the Pleistocene the surge coolings were sufficient to trigger the northern ice ages. If so, interglacial pollen profiles should show rapid but temporary marine transgressions beginning at the break of climate. Evidence suggesting such transgressions occurs in England and the United States, but is still insufficient to disprove explanations such as local downwarping. There is no evidence yet for surges in Wisconsin or Post-glacial time. There is some evidence that the Antarctic Ice Sheet is currently building up, but this could be a response to a Post-glacial accumulation increase rather than the prelude to a surge.


2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1111
Author(s):  
Francis J. Sousa ◽  
Kenneth A. Farley

This paper presents a framework for evaluating variation in (U-Th)/He datasets. The framework is objective, repeatable, and based on compatibility of thermal histories derived from individual (U-Th)/He dates. The structure of this new method includes three fundamental steps. First, the allowable thermal history of each individual grain is quantitatively constrained with a model. Second, the thermal histories of all grains from a sample are visualized on the same axes. Third, the compatibility of the allowable thermal histories of each individual grain is evaluated. This allows a user to assess whether variation among single grain dates can plausibly be explained (referred to here as legitimate) or not (illegitimate). Additionally, this methodology allows for accurate representation of the impact that illegitimate variation has on the thermal history constraints of a sample. We demonstrate the application of this new framework using a variety of examples from the literature, as well as with synthetic data. Modeling presented here is executed using the modeling software QTQt (version 5.6.0) and the He diffusion kinetics based on the radiation damage accumulation and annealing model, but the framework is designed to be easily adaptable to any modeling software and diffusion parameters.


2021 ◽  
Author(s):  
Dale R. Issler ◽  
Kalin T. McDannell ◽  
Paul B. O'Sullivan ◽  
Larry S. Lane

Abstract. Compositionally dependent apatite fission track (AFT) annealing is a common but underappreciated cause for age dispersion in detrital AFT samples. We present an interpretation and modelling strategy that exploits multikinetic AFT annealing to obtain thermal histories that can provide more detail and better resolution compared to conventional methods. We illustrate our method using a Permian and a Devonian sample from the Yukon, Canada, both with complicated geological histories and long residence times in the AFT partial annealing zone. Effective Cl values (eCl; converted from rmr0 values), derived from detailed apatite elemental data, are used to define AFT statistical kinetic populations with significantly different total annealing temperatures (~110–245 °C) and ages that agree closely with the results of age mixture modelling. These AFT populations are well-resolved using eCl values but exhibit significant overlap with respect to the conventional parameters, Cl content or Dpar. Elemental analyses and measured Dpar for Phanerozoic samples from the Yukon and Northwest Territories confirm that Dpar has low precision and that Cl content alone cannot account for the compositional and associated kinetic variability observed in natural samples. An inverse multikinetic AFT model, AFTINV, is used to obtain thermal history information by simultaneously modelling multiple kinetic populations as distinct thermochronometers with different temperature sensitivities. A nondirected Monte Carlo scheme generates a set of statistically acceptable solutions at the 0.05 significance level and then these solutions are updated to the 0.5 level using a controlled random search (CRS) learning algorithm. The smoother, closer-fitting CRS solutions allow for a more consistent assessment of the eCl values and thermal history styles that are needed to satisfy the AFT data. The high-quality Devonian sample (39 single grain ages and 202 track lengths) has two kinetic populations that require three cycles of heating and cooling (each subsequent event of lower intensity) to obtain close-fitting solutions. The younger and more westerly Permian sample with three kinetic populations only records the latter two heating events. These results are compatible with known stratigraphic and thermal maturity constraints and the QTQt software produces similar results. Model results for these and other samples suggest that elemental-derived eCl values are accurate within the range, 0–0.25 apfu (rmr0 values of 0.73–0.84), which encompasses most of the data from annealing experiments. Outside of this range, eCl values for more exotic compositions may require adjustment relative to better constrained apatite compositions when trying to fit multiple kinetic populations. Our results for natural and synthetic samples suggest that an element-based multikinetic approach has great potential to increase the temperature range and resolution of thermal histories dramatically relative to conventional AFT thermochronology.


Sign in / Sign up

Export Citation Format

Share Document