scholarly journals Supplemental Material: Quaternary basaltic volcanic fields of the American Southwest

Author(s):  
Greg Valentine ◽  
et al.

<div>Listing of published age dates and total Quaternary volcano counts in the southwest USA. <br></div>

2021 ◽  
Author(s):  
Greg Valentine ◽  
et al.

<div>Listing of published age dates and total Quaternary volcano counts in the southwest USA. <br></div>


2021 ◽  
Author(s):  
Greg Valentine ◽  
et al.

<div>Listing of published age dates and total Quaternary volcano counts in the southwest USA. <br></div>


Geosphere ◽  
2021 ◽  
Author(s):  
Greg A. Valentine ◽  
Michael H. Ort ◽  
Joaquín A. Cortés

The southwestern United States contains numerous monogenetic basaltic volcanoes distributed in intraplate volcanic fields. We review, on a regional scale, our current understanding of the Quaternary basalts with a focus on aspects pertinent to hazard assessment, such as physical volcanology and geochronology, while also summarizing the several petrogenetic concep­tual models that have been proposed for the range of local tectonic settings in the region. We count 2229 volcanoes in 37 volcanic fields (including the Pinacate volcanic field, which is mostly in northern Sonora, Mexico). Volcanic landforms are dominantly scoria cones and ramparts with attendant lava fields that have a spectrum of ‘a’ā and blocky to pāhoehoe morphologies, while a small percentage of the volcanoes are maars and tuff cones. Explosive eruption styles that were driven mainly by magmatic volatiles, where they have been studied in detail, included Hawaiian, Strombolian, violent Strombolian, and sub-Plinian activity. The latter two have resulted in sub­stantial fallout deposits that can be traced tens of kilometers from source vents. Phreatomagmatic styles have produced pyroclastic current (mainly pyroclastic surges), ballistic, and fallout deposits. These eruption styles pose hazards to humans when they occur in populated areas and to air travel and regional infrastructure even in sparsely populated areas. All but one of the major volcanic fields (fields that contain ~100 or more Quaternary volcanoes) together form a northwest-southeast–trending band, which we suggest may reflect an influence of plate-boundary-related shearing on melt segregation in the upper mantle along with other factors; this view is consistent with recent global positioning system (GPS) and structural geologic data indicating the influence of dextral motion along the North America-Pacific plate boundary deep inside the Southwest. Of the 2229 Quaternary volcanoes identified, ~548 (25%) have been dated, and only ~15% have been dated with methods such as 40Ar/39Ar and cosmogenic surface exposure methods that are considered optimal for young basalts. Acknowledging the large uncertainty due to the poor geochronological data coverage, we use a simple Poisson model to pro­vide a first-order estimate of recurrence rates of monogenetic volcanoes on the scale of the region as a whole; recurrence rates using our compiled age data set range from 3.74 × 10−4 yr−1 to 8.63 × 10−4 yr−1. These values are only based on dated and mapped volcanoes, respectively, and do not account for undated and buried volcanoes or other uncertainties in the volcano count. The time between monogenetic eruptions in the Southwest is similar to the repose times of some polygenetic volcanoes, which suggests that the regional hazard is potentially commensurate with the hazard from a reawakening stratovolcano such as those in the Cascade Range. Notable in our review is that only a few volcanoes have been the subject of physical volcanological characterization, interpretation, and detailed petrologic study that may elu­cidate factors such as magma generation, ascent (including time scales), and controls on eruption style.


2005 ◽  
Author(s):  
John W. Ewert ◽  
Christopher J. Harpel ◽  
Suzanna K. Brooks

1985 ◽  
Author(s):  
G.E. Ericksen ◽  
R.L. Smith ◽  
R.G. Luedke ◽  
Mario Flores ◽  
Alfredo Espinosa ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


2017 ◽  
Vol 4 ◽  
pp. 55-98
Author(s):  
Kathleen Springer ◽  
Jeffrey Pigati ◽  
Eric Scott

Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.


Sign in / Sign up

Export Citation Format

Share Document