scholarly journals Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake

Geosphere ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 797-827 ◽  
Author(s):  
John M. Fletcher ◽  
Orlando J. Teran ◽  
Thomas K. Rockwell ◽  
Michael E. Oskin ◽  
Kenneth W. Hudnut ◽  
...  
2019 ◽  
Vol 38 (8) ◽  
pp. 604-609
Author(s):  
Lin Li ◽  
Lie Li ◽  
Tao Xu ◽  
Min Ouyang ◽  
Yonghao Gai ◽  
...  

Wenchang Field in the South China Sea contains a well-developed fault system, resulting in complex subsurface geology. Imaging the complex fault system plays an important role in hydrocarbon exploration in this area since the fault system forms a link between the source rocks and reservoirs. However, it is difficult to obtain a high-quality depth image of the fault system due to the effects of complex velocity and seismic absorption. Inaccurate depth velocities lead to fault shadows and structure distortions at the target zone. Absorption effects further deteriorate seismic imaging as they cause amplitude attenuation, phase distortion, and resolution reduction. We demonstrate how a combination of high-resolution depth velocity modeling and Q imaging work together to resolve these challenges. This workflow provides a step change in image quality of the complex fault system and targeted source rocks at Wenchang Field, significantly enhancing structure interpretation and reservoir delineation. A couple of commercial discoveries have been made, and several other potential hydrocarbon reservoirs have been identified based on the reprocessed data, which reveal new hydrocarbon potential in this region.


2020 ◽  
Vol 12 (23) ◽  
pp. 3883
Author(s):  
Chenglong Li ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Dezheng Zhao ◽  
Yanchuan Li ◽  
...  

The 2019 Ridgecrest, California earthquake sequence ruptured along a complex fault system and triggered seismic and aseismic slips on intersecting faults. To characterize the surface rupture kinematics and fault slip distribution, we used optical images and Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the displacement caused by the earthquake sequence. We further calculated curl and divergence from the north-south and east-west components, to effectively identify the surface rupture traces. The results show that the major seismogenic fault had a length of ~55 km and strike of 320° and consisted of five secondary faults. On the basis of the determined multiple-fault geometries, we inverted the coseismic slip distributions by InSAR measurements, which indicates that the Mw7.1 mainshock was dominated by the right-lateral strike-slip (maximum strike-slip of ~5.8 m at the depth of ~7.5 km), with a small dip-slip component (peaking at ~1.8 m) on an east-dipping fault. The Mw6.4 foreshock was dominated by the left-lateral strike-slip on a north-dipping fault. These earthquakes triggered obvious aseismic creep along the Garlock fault (117.3° W–117.5° W). These results are consistent with the rupture process of the earthquake sequence, which featured a complicated cascading rupture rather than a single continuous rupture front propagating along multiple faults.


2009 ◽  
Vol 61 (2) ◽  
pp. 273-278 ◽  
Author(s):  
Takeshi Nakamura ◽  
Yasushi Ishihara ◽  
Yoshiko Yamanaka ◽  
Yoshiyuki Kaneda

2019 ◽  
Vol 217 (1) ◽  
pp. 58-74 ◽  
Author(s):  
Jeong-Ung Woo ◽  
Junkee Rhie ◽  
Seongryong Kim ◽  
Tae-Seob Kang ◽  
Kwang-Hee Kim ◽  
...  

Author(s):  
Ian K. D. Pierce ◽  
Steven G. Wesnousky ◽  
Sourav Saha ◽  
Seulgi Moon

ABSTRACT The Carson City and Indian Hills faults in Carson City, Nevada, splay northeastward from the major range-bounding Genoa fault. Each splay is part of the Carson range fault system that extends nearly 100 km northward from near Markleeville, California, to Reno, Nevada. Stratigraphic and structural relationships exposed in paleoseismic excavations across the two faults yield a record of ground-rupturing earthquakes. The most recent on the Carson City fault occurred around 473–311 B.P., with the two penultimate events between 17.9 and 8.1 ka. Two trench exposures across the Indian Hills fault record the most recent earthquake displacement after ∼900 yr, preceded by a penultimate surface rupture ≥∼10,000, based on radiocarbon and infrared-stimulated luminescence dating of exposed sediments. The age estimates allow that the Carson City and Indian Hills faults ruptured simultaneously with a previously reported large earthquake on the Genoa fault ∼514–448 B.P. Similar synchronicity of rupture is not observed in the record of penultimate events. Penultimate ages of ruptures on the Carson City and Indian Hills faults are several thousand years older than that of the Genoa fault from which they splay. Together, these observations imply a variability in rupture moment through time, demonstrating the importance of considering multi-fault rupture models for seismic hazard analyses.


Sign in / Sign up

Export Citation Format

Share Document