fault record
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Jinhong Di ◽  
Pengkun Yang ◽  
Chunyan Wang ◽  
Lichao Yan

In order to overcome the problems of large error and low precision in traditional power fault record data compression, a new layered lossless compression method for massive fault record data is proposed in this paper. The algorithm applies LZW (Lempel Ziv Welch) algorithm, analyzes the LZW algorithm and existing problems, and improves the LZW algorithm. Use the index value of the dictionary to replace the input string sequence, and dynamically add unknown strings to the dictionary. The parallel search method is to divide the dictionary into several small dictionaries with different bit widths to realize the parallel search of the dictionary. According to the compression and decompression of LZW, the optimal compression effect of LZW algorithm hardware is obtained. The multi tree structure of the improved LZW algorithm is used to construct the dictionary, and the multi character parallel search method is used to query the dictionary. The multi character parallel search method is used to query the dictionary globally. At the same time, the dictionary size and update strategy of LZW algorithm are analyzed, and the optimization parameters are designed to construct and update the dictionary. Through the calculation of lossless dictionary compression, the hierarchical lossless compression of large-scale fault record data is completed. Select the optimal parameters, design the dictionary size and update strategy, and complete the lossless compression of recorded data. The experimental results show that compared with the traditional compression method, under this compression method, the mean square error percentage is effectively reduced, and the compression error and compression rate are eliminated, so as to ensure the integrity of fault record data, achieve the compression effect in a short time, and achieve the expected goal.


Author(s):  
Ian K. D. Pierce ◽  
Steven G. Wesnousky ◽  
Sourav Saha ◽  
Seulgi Moon

ABSTRACT The Carson City and Indian Hills faults in Carson City, Nevada, splay northeastward from the major range-bounding Genoa fault. Each splay is part of the Carson range fault system that extends nearly 100 km northward from near Markleeville, California, to Reno, Nevada. Stratigraphic and structural relationships exposed in paleoseismic excavations across the two faults yield a record of ground-rupturing earthquakes. The most recent on the Carson City fault occurred around 473–311 B.P., with the two penultimate events between 17.9 and 8.1 ka. Two trench exposures across the Indian Hills fault record the most recent earthquake displacement after ∼900 yr, preceded by a penultimate surface rupture ≥∼10,000, based on radiocarbon and infrared-stimulated luminescence dating of exposed sediments. The age estimates allow that the Carson City and Indian Hills faults ruptured simultaneously with a previously reported large earthquake on the Genoa fault ∼514–448 B.P. Similar synchronicity of rupture is not observed in the record of penultimate events. Penultimate ages of ruptures on the Carson City and Indian Hills faults are several thousand years older than that of the Genoa fault from which they splay. Together, these observations imply a variability in rupture moment through time, demonstrating the importance of considering multi-fault rupture models for seismic hazard analyses.


Author(s):  
Min Luo ◽  
Luman Yu ◽  
Yimiao Yao

Abstract The RAMS information of rail vehicles is an important data for the operation and maintenance of rail transit, and is the key to improving the performance and reliability level of rail vehicle equipment. At present, there are a large number of colloquial, hybridized and subjective data records in the RAMS information of metro trains; especially in the vehicle fault record, this phenomenon is widespread, which brings great difficulties to subsequent data analysis. Therefore, how to convert these irregular fault records into computer-readable fault texts is of great significance. This paper proposes the RAMS information structuring algorithm based on the Jieba word segmentation and Doc2Vec technology. Besides, we compile a professional dictionary of metro vehicles and a standard fault statement library for metro vehicles.


2019 ◽  
Vol 132 (7-8) ◽  
pp. 1566-1586 ◽  
Author(s):  
Christopher B. DuRoss ◽  
Ryan D. Gold ◽  
Richard W. Briggs ◽  
Jaime E. Delano ◽  
Dean A. Ostenaa ◽  
...  

Abstract The 72-km-long Teton normal fault bounds the eastern base of the Teton Range in northwestern Wyoming, USA. Although geomorphic surfaces along the fault record latest Pleistocene to Holocene fault movement, the postglacial earthquake history of the fault has remained enigmatic. We excavated a paleoseismic trench at the Buffalo Bowl site along the southernmost part of the fault to determine its Holocene rupture history and slip rate. At the site, ∼6.3 m of displacement postdates an early Holocene (ca. 10.5 ka) alluvial-fan surface. We document evidence of three surface-faulting earthquakes based on packages of scarp-derived colluvium that postdate the alluvial-fan units. Bayesian modeling of radiocarbon and luminescence ages yields earthquake times of ca. 9.9 ka, ca. 7.1 ka, and ca. 4.6 ka, forming the longest, most complete paleoseismic record of the Teton fault. We integrate these data with a displaced deglacial surface 4 km NE at Granite Canyon to calculate a postglacial to mid-Holocene (14.4–4.6 ka) slip rate of ∼1.1 mm/yr. Our analysis also suggests that the postglacial to early Holocene (14.4–9.9 ka) slip rate exceeds the Holocene (9.9–4.6 ka) rate by a factor of ∼2 (maximum of 3); however, a uniform rate for the fault is possible considering the 95% slip-rate errors. The ∼5 k.y. elapsed time since the last rupture of the southernmost Teton fault implies a current slip deficit of ∼4–5 m, which is possibly explained by spatially/temporally incomplete paleoseismic data, irregular earthquake recurrence, and/or variable per-event displacement. Our study emphasizes the importance of minimizing slip-rate uncertainties by integrating paleoseismic and geomorphic data sets and capturing multiple earthquake cycles.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 81 ◽  
Author(s):  
Sundaravaradan Navalpakkam Ananthan ◽  
Alvaro Furlani Bastos ◽  
Surya Santoso ◽  
Alberto Del Rosso

Post-fault event report analysis is a crucial skill set for electric power engineers in the protection industry. This paper serves as a reference which elucidates the preprocessing procedures involved in transforming data present in event reports to phasors that can be used in various post-fault analysis application algorithms. The paper discusses key elements of this process such as interpreting the data and calculating voltage and current phasors from instantaneous sample values present in a fault record. A crucial component of event report analysis is choosing the appropriate time instant for calculating phasors for event report analysis. Conventionally, protection engineers manually perform event report analysis and arbitrarily select time instants after certain cycles of fault inception for this purpose. This approach prevents the process from being successfully automated. Furthermore, arbitrary selection of time instant does not utilize the entire fault data and may fail in several cases such as short time fault scenario and evolving fault scenario. For this purpose, this paper proposes an adaptive novel technique which utilizes the entire data present in the event report to select the most suitable time instant for event report analysis. The superiority of the proposed algorithm over conventional methods is demonstrated using three real-world scenarios.


2018 ◽  
Vol 15 (5) ◽  
pp. 297-306 ◽  
Author(s):  
Chang-Hun Lee ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos ◽  
Zakwan Skaf

Sign in / Sign up

Export Citation Format

Share Document