scholarly journals Supplemental Material: Early and middle Miocene ice sheet dynamics in the Ross Sea: Results from integrated core-log-seismic interpretation

2021 ◽  
Author(s):  
L F Pérez ◽  
et al.

Additional information regarding methods (Reflection seismic processing, Drill-site measurements, Core-log-seismic correlations, Spatial Velocity calculations, and Reflection Tomography model) and regional stratigraphy descriptions, as well as detailed considerations regarding the opal distribution and depth.

2021 ◽  
Author(s):  
L F Pérez ◽  
et al.

Additional information regarding methods (Reflection seismic processing, Drill-site measurements, Core-log-seismic correlations, Spatial Velocity calculations, and Reflection Tomography model) and regional stratigraphy descriptions, as well as detailed considerations regarding the opal distribution and depth.


2021 ◽  
Author(s):  
L F Pérez ◽  
et al.

Additional information regarding methods (Reflection seismic processing, Drill-site measurements, Core-log-seismic correlations, Spatial Velocity calculations, and Reflection Tomography model) and regional stratigraphy descriptions, as well as detailed considerations regarding the opal distribution and depth.


2021 ◽  
Author(s):  
L F Pérez ◽  
et al.

Additional information regarding methods (Reflection seismic processing, Drill-site measurements, Core-log-seismic correlations, Spatial Velocity calculations, and Reflection Tomography model) and regional stratigraphy descriptions, as well as detailed considerations regarding the opal distribution and depth.


2021 ◽  
Author(s):  
L F Pérez

Additional information regarding methods (Reflection seismic processing, Drill-site measurements, Core-log-seismic correlations, Spatial Velocity calculations, and Reflection Tomography model) and regional stratigraphy descriptions, as well as detailed considerations regarding the opal distribution and depth.


Author(s):  
Lara F. Pérez ◽  
Laura De Santis ◽  
Robert M. McKay ◽  
Robert D. Larter ◽  
Jeanine Ash ◽  
...  

Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17−14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6−13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea.


2021 ◽  
Vol 40 (10) ◽  
pp. 759-767
Author(s):  
Rolf H. Baardman ◽  
Rob F. Hegge

Machine learning (ML) has proven its value in the seismic industry with successful implementations in areas of seismic interpretation such as fault and salt dome detection and velocity picking. The field of seismic processing research also is shifting toward ML applications in areas such as tomography, demultiple, and interpolation. Here, a supervised ML deblending algorithm is illustrated on a dispersed source array (DSA) data example in which both high- and low-frequency vibrators were deployed simultaneously. Training data pairs of blended and corresponding unblended data were constructed from conventional (unblended) data from another survey. From this training data, the method can automatically learn a deblending operator that is used to deblend for both the low- and the high-frequency vibrators of the DSA data. The results obtained on the DSA data are encouraging and show that the ML deblending method can offer a good performing, less user-intensive alternative to existing deblending methods.


2012 ◽  
Vol 369 (1) ◽  
pp. 477-496 ◽  
Author(s):  
M. Nemčok ◽  
S. T. Sinha ◽  
C. J. Stuart ◽  
C. Welker ◽  
M. Choudhuri ◽  
...  

2020 ◽  
Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Arctic regions are the place of the fastest observed climate change. One of the indicators of such evolution are changes occurring in the glaciers and the subsurface in the permafrost. The active layer of the permafrost as the shallowest one is well measured by multiple geophysical techniques and in-situ measurements.</p><p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). Two seismic profiles have been designed to visualize the shape of permafrost between the sea coast and the slope of the mountain, and at the front of a retreating glacier. For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with GPR and ERT measurements, and continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic and auxiliary data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the active layer where P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. The same laboratory study shows significant (>10%) increase of velocity in frozen low porosity rocks, that should be easily visible in seismic.</p><p>In the reflection seismic processing, the most critical part was a detailed front mute to eliminate refracted arrivals spoiling wide-angle near-surface reflections. Those long offset refractions were however used to estimate near-surface velocities further used in reflection processing. In the reflection seismic image, a horizontal reflection was traced at the depth of 120 m at the sea coast deepening to the depth of 300 m near the mountain.</p><p>Additionally, an optimal set of seismic parameters has been established, clearly showing a significantly higher signal to noise ratio in case of frozen ground conditions even with the snow cover. Moreover, logistics in the frozen conditions are much easier and a lack of surface waves recorded in the snow buried geophones makes the seismic processing simpler.</p><p>Acknowledgements               </p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>


Sign in / Sign up

Export Citation Format

Share Document