scholarly journals Geophysical imaging of permafrost in the SW Svalbard – the result of two high arctic expeditions to Spitsbergen

Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Arctic regions are the place of the fastest observed climate change. One of the indicators of such evolution are changes occurring in the glaciers and the subsurface in the permafrost. The active layer of the permafrost as the shallowest one is well measured by multiple geophysical techniques and in-situ measurements.</p><p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). Two seismic profiles have been designed to visualize the shape of permafrost between the sea coast and the slope of the mountain, and at the front of a retreating glacier. For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with GPR and ERT measurements, and continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic and auxiliary data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the active layer where P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. The same laboratory study shows significant (>10%) increase of velocity in frozen low porosity rocks, that should be easily visible in seismic.</p><p>In the reflection seismic processing, the most critical part was a detailed front mute to eliminate refracted arrivals spoiling wide-angle near-surface reflections. Those long offset refractions were however used to estimate near-surface velocities further used in reflection processing. In the reflection seismic image, a horizontal reflection was traced at the depth of 120 m at the sea coast deepening to the depth of 300 m near the mountain.</p><p>Additionally, an optimal set of seismic parameters has been established, clearly showing a significantly higher signal to noise ratio in case of frozen ground conditions even with the snow cover. Moreover, logistics in the frozen conditions are much easier and a lack of surface waves recorded in the snow buried geophones makes the seismic processing simpler.</p><p>Acknowledgements               </p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>

2010 ◽  
Vol 10 (2) ◽  
pp. 2221-2244 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over snow have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, transport pathways affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with the associated transport frequency. Based on the atmospheric transport frequency and the estimated BC emission intensity from surrounding regions, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measured at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that Eurasia is the major contributor to the near-surface BC levels at the Canadian High Arctic site with an average contribution of over 85% during the 16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the change in Eurasian contributions depends mainly on the reduction of emission intensity, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 434 ◽  
Author(s):  
Irina Streletskaya ◽  
Alexander Vasiliev ◽  
Gleb Oblogov ◽  
Dmitry Streletskiy

Permafrost degradation of coastal and marine sediments of the Arctic Seas can result in large amounts of methane emitted to the atmosphere. The quantitative assessment of such emissions requires data on variability of methane content in various types of permafrost strata. To evaluate the methane concentrations in sediments and ground ice of the Kara Sea coast, samples were collected at a series of coastal exposures. Methane concentrations were determined for more than 400 samples taken from frozen sediments, ground ice and active layer. In frozen sediments, methane concentrations were lowest in sands and highest in marine clays. In ground ice, the highest concentrations above 500 ppmV and higher were found in massive tabular ground ice, with much lower methane concentrations in ground ice wedges. The mean isotopic composition of methane is −68.6‰ in permafrost and −63.6‰ in the active layer indicative of microbial genesis. The isotopic compositions of the active layer is enriched relative to permafrost due to microbial oxidation and become more depleted with depth. Ice-rich sediments of Kara Sea coasts, especially those with massive tabular ground ice, hold large amounts of methane making them potential sources of methane emissions under projected warming temperatures and increasing rates of coastal erosion.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. U77-U84 ◽  
Author(s):  
B. Bergman ◽  
A. Tryggvason ◽  
C. Juhlin

Reflection seismic imaging of the uppermost kilometer of crystalline bedrock is an important component in site surveys for locating potential storage sites for nuclear waste in Sweden. To obtain high-quality images, refraction statics are calculated using first-break traveltimes. These first-break picks may also be used to produce tomographic velocity images of the uppermost bedrock. In an earlier study, we presented a method applicable to data sets where the vast majority of shots are located in the bedrock below the glacial deposits, or cover, typical for northern latitudes. A by-product of this method was an estimate of the cover thickness from the receiver static that was introduced to sharpen the image. We now present a modified version of this method that is applicable for sources located in or on the cover, the general situation for nuclear waste site surveys. This modified methodalso solves for 3D velocity structure and static correctionssimultaneously in the inversion process. The static corrections can then be used to estimate the cover thickness. First, we test our tomography method on synthetic data withthe shot points in the bedrock below the cover. Next, we developa strategy for the case when the sources are within the cover. Themethod is then applied to field data from five crooked-line,high-resolution reflection seismic profiles ranging in lengthfrom 2 to [Formula: see text]. The crooked-line profiles make the study 2.5dimensional regarding bedrock velocities. The cover thicknessalong the profiles varies from 0 to [Formula: see text]. Estimated thickness ofthe cover agrees well with data from boreholes drilled near theprofiles. Low-velocity zones in the uppermost bedrock generallycorrelate with locations where reflections from the stackedsections project to the surface. Thus, the method is functional,both for imaging the uppermost bedrock velocities as well as for estimating the cover thickness.


2017 ◽  
Vol 3 (2) ◽  
pp. 334-353 ◽  
Author(s):  
Michel Paquette ◽  
Daniel Fortier ◽  
Warwick F. Vincent

Water tracks play a major role in the headwater basin hydrology of permafrost landscapes in Alaska and Antarctica, but less is known about these features in the High Arctic. We examined the physical and hydrological properties of water tracks on Ward Hunt Island, a polar desert site in the Canadian High Arctic, to evaluate their formation process and to compare with water tracks reported elsewhere. These High Arctic water tracks flowed through soils that possessed higher near-surface organic carbon concentrations, higher water content, and coarser material than the surrounding soils. The water track morphology suggested they were initiated by a combination of sorting, differential frost heaving, and eluviation. The resultant network of soil conduits, comparable to soil pipes, dominated the hydrology of the slope. The flow of cold water through these conduits slowed down the progression of the thawing front during summer, making the active layer consistently shallower relative to adjacent soils. Water tracks on Ward Hunt Island, and in polar desert catchments with these features elsewhere in the High Arctic, strongly influence slope hydrology and active-layer properties while also affecting vegetation distribution and the quality of runoff to the downstream lake.


2017 ◽  
Vol 17 (12) ◽  
pp. 2335-2350 ◽  
Author(s):  
Sonja H. Wadas ◽  
David C. Tanner ◽  
Ulrich Polom ◽  
Charlotte M. Krawczyk

Abstract. In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW–SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.


2008 ◽  
Vol 39 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Douglas L. Kane ◽  
Larry D. Hinzman ◽  
Robert E. Gieck ◽  
James P. McNamara ◽  
Emily K. Youcha ◽  
...  

Spring snowmelt floods in the Arctic are common and can be expected every year, mainly because of the extensive snow cover that ablates relatively quickly. However, documentation of extreme flows (both low and high) in the Arctic is lacking in part because extreme flows are relatively rare and gauging sites are very sparse, with most of short duration. In the nested Kuparuk River research watersheds on the North Slope of Alaska, two large summer floods have been observed (July 1999 and August 2002) in the headwaters; these high flows are contrasted to the low flows (drought conditions) observed in the summers of 2005 and 2007. It is clear that the continuous permafrost and the limited near-surface storage in the shallow active layer are responsible for both the high and low flow responses. Or, stated another way, the active layer is a poor buffer to both floods and droughts. When contrasting summer floods with snowmelt floods, it is clear from flood frequency analyses that the smaller, high-gradient headwater basins will be dominated by summer floods while those watersheds draining the low gradient coastal plain will be dominated by snowmelt floods. The two summer floods in the headwaters had flows that were three to four times greater than the largest measured snowmelt flood, while on the coastal plain the 2002 summer storm for the whole of the Kuparuk River only produced the maximum summer runoff of record that was about 1/4 of the maximum snowmelt flood. So, on the coastal plain and even for the Greater Kuparuk River that drains across the coastal plain, snowmelt floods dominate. Drought conditions prevail in summers when the limited surface water storage in the active layer and surface water bodies is depleted because evapotranspiration exceeds precipitation.


2019 ◽  
Vol 95 (11) ◽  
Author(s):  
Maria Antonia Cavaco ◽  
Vincent Lawrence St. Louis ◽  
Katja Engel ◽  
Kyra Alexandra St. Pierre ◽  
Sherry Lin Schiff ◽  
...  

ABSTRACT Current models predict increases in High Arctic temperatures and precipitation that will have profound impacts on the Arctic hydrological cycle, including enhanced glacial melt and thawing of active layer soils. However, it remains uncertain how these changes will impact the structure of downstream resident freshwater microbial communities and ensuing microbially driven freshwater ecosystem services. Using the Lake Hazen watershed (Nunavut, Canada; 82°N, 71°W) as a sentinel system, we related microbial community composition (16S rRNA gene sequencing) to physicochemical parameters (e.g. dissolved oxygen and nutrients) over an annual hydrological cycle in three freshwater compartments within the watershed: (i) glacial rivers; (ii) active layer thaw-fed streams and waterbodies and (iii) Lake Hazen, into which (i) and (ii) drain. Microbial communities throughout these freshwater compartments were strongly interconnected, hydrologically, and often correlated with the presence of melt-sourced chemicals (e.g. dissolved inorganic carbon) as the melt season progressed. Within Lake Hazen itself, water column microbial communities were generally stable over spring and summer, despite fluctuating lake physicochemistry, indicating that these communities and the potential ecosystem services they provide therein may be resilient to environmental change. This work helps to establish a baseline understanding of how microbial communities and the ecosystem services they provide in Arctic watersheds might respond to future climate change.


2018 ◽  
Author(s):  
Thomas Schneider von Deimling ◽  
Thomas Kleinen ◽  
Gustaf Hugelius ◽  
Christian Knoblauch ◽  
Christian Beer ◽  
...  

Abstract. We have developed a new module to calculate soil organic carbon (SOC) accumulation in perennially frozen ground in the land surface model JSBACH. Running this offline version of MPI-ESM we have modelled permafrost carbon accumulation and release from the Last Glacial Maximum (LGM) to the Pre-industrial (PI). Our simulated near-surface PI permafrost extent of 16.9 Mio km2 is close to observational evidence. Glacial boundary conditions, especially ice sheet coverage, result in profoundly different spatial patterns of glacial permafrost extent. Deglacial warming leads to large-scale changes in soil temperatures, manifested in permafrost disappearance in southerly regions, and permafrost aggregation in formerly glaciated grid cells. In contrast to the large spatial shift in simulated permafrost occurrence, we infer an only moderate increase of total LGM permafrost area (18.3 Mio km2) – together with pronounced changes in the depth of seasonal thaw. Reconstructions suggest a larger spread of glacial permafrost towards more southerly regions, but with a highly uncertain extent of non-continuous permafrost. Compared to a control simulation without describing the transport of SOC into perennially frozen ground, the implementation of our newly developed module for simulating permafrost SOC accumulation leads to a doubling of simulated LGM permafrost SOC storage (amounting to a total of ~ 150 PgC). Despite LGM temperatures favouring a larger permafrost extent, simulated cold glacial temperatures – together with low precipitation and low CO2 levels – limit vegetation productivity and therefore prevent a larger glacial SOC build-up in our model. Changes in physical and biogeochemical boundary conditions during deglacial warming lead to an increase in mineral SOC storage towards the Holocene (168 PgC at PI), which is below observational estimates (575 PgC in continuous and discontinuous permafrost). Additional model experiments clarified the sensitivity of simulated SOC storage to model parameters, affecting long-term soil carbon respiration rates and simulated active layer depths. Rather than a steady increase in carbon release from the LGM to PI as a consequence of deglacial permafrost degradation, our results suggest alternating phases of soil carbon accumulation and loss as an effect of dynamic changes in permafrost extent, active layer depths, soil litter input, and heterotrophic respiration.


2013 ◽  
Vol 9 (4) ◽  
pp. 3993-4034 ◽  
Author(s):  
G. Schwamborn ◽  
H. Meyer ◽  
L. Schirrmeister ◽  
G. Fedorov

Abstract. Past permafrost thaw and freeze has destabilised the basin slopes of Lake El'gygytgyn in the northeastern Eurasian Arctic. This has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column. The continuous sediment record from the Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes likely have played a crucial role for sediment delivery to the lake. Changes in the ground ice hydrochemical composition (pH, δ18O, δD, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3−, Cl−, SO4−) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated freeze and thaw cycles at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0 m to 9.1 m core depth) and a postdepositional record of talik thawing and refreezing in deeper layers of the core (9.1 to 141.0 m core depth). The lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. At least three cycles of freeze and thaw during marine isotope stage (MIS) 7, possibly MIS 5, and the Allerød (AD) are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time.


2021 ◽  
Author(s):  
Frans-Jan W. Parmentier ◽  
Lennart Nilsen ◽  
Hans Tømmervik ◽  
Elisabeth J. Cooper

Abstract. Near-surface remote sensing techniques are essential monitoring tools to provide spatial and temporal resolutions beyond the capabilities of orbital methods. This high level of detail is especially helpful to monitor specific plant communities and to accurately time the phenological stages of vegetation – which satellites can miss by days or weeks in frequently clouded areas such as the Arctic. In this paper, we describe a measurement network that is distributed across varying plant communities in the high Arctic valley of Adventdalen on the Svalbard archipelago, with the aim to monitor vegetation phenology. The network consists of ten racks equipped with sensors that measure NDVI (Normalized Difference Vegetation Index), soil temperature and moisture, as well as time-lapse RGB cameras. Three additional time-lapse cameras are placed on nearby mountain tops to provide an overview of the valley. The vegetation index GCC (Green Chromatic Channel) was derived from these RGB photos, which has similar applications as NDVI but at a fraction of the cost of NDVI imaging sensors. To create a robust timeseries for GCC, each set of photos was adjusted for unwanted movement of the camera with a stabilizing algorithm that enhances the spatial precision of these measurements. This code is available at https://doi.org/10.5281/zenodo.4554937 (Parmentier, 2021) and can be applied to time series obtained with other time-lapse cameras. This paper presents an overview of the data collection and processing, and an overview of the dataset which is available at https://doi.org/10.21343/kbpq-xb91 (Nilsen et al. 2021). In addition, we provide some examples of how this data can be used to monitoring different vegetation communities in the landscape.


Sign in / Sign up

Export Citation Format

Share Document