scholarly journals Supplemental Material: Late Quaternary active faulting on the inherited Baoertu basement fault within the eastern Tian Shan orogenic belt: Implications for regional tectonic deformation and slip partitioning, NW China

2021 ◽  
Author(s):  
Chuanyong Wu ◽  
et al.

Figure S1: Profile of velocity components normal to structure striking (E-W components) across the eastern Tian Shan (profile from (85.3°, 41.0°) to (85.3°, 45.0°) with a width of 240 km.

2021 ◽  
Author(s):  
Chuanyong Wu ◽  
et al.

Figure S1: Profile of velocity components normal to structure striking (E-W components) across the eastern Tian Shan (profile from (85.3°, 41.0°) to (85.3°, 45.0°) with a width of 240 km.


Author(s):  
Chuanyong Wu ◽  
Guangxue Ren ◽  
Siyu Wang ◽  
Xue Yang ◽  
Gan Chen ◽  
...  

The deformation pattern and slip partitioning related to oblique underthrusting of the Tarim Basin in the eastern Tian Shan orogenic belt are not well understood because interior deformation images are lacking. The Baoertu fault is an E-W−striking, ∼350-km-long reactivated basement structure within the eastern Tian Shan. In this study, we quantify its late Quaternary activity based on interpretations of detailed high-resolution remote sensing images and field investigations. Three field observation sites along an ∼80-km-long fault segment indicate that the Baoertu fault is characterized by sinistral thrust faulting. Based on surveying of the displaced geomorphic surfaces with an unmanned drone and dating of the late Quaternary sediments using radiocarbon and optically stimulated luminescence (OSL) methods, we estimate a late Quaternary left-lateral, strike-slip rate of 1.87 ± 0.29 mm/yr and a N−S shortening rate of 0.26 ± 0.04 mm/yr for this fault. The lithospheric Baoertu fault acts as a decoupling zone and accommodates the left-lateral shearing caused by the oblique underthrusting of the Tarim Basin. In the eastern Tian Shan orogenic belt, the oblique convergence is partitioned into thrust faulting across the entire range and sinistral slip faulting on the high-dip basement structure within the orogen. This active faulting pattern in the eastern Tian Shan of sinistral shearing in the center and thrust faulting on both sides can be viewed as giant, crustal-scale positive flower structures.


Author(s):  
Tariq I.H. Rahiman ◽  
Jarg R. Pettinga

Viti Levu, the main island of Fiji, is located in a seismically active area within the Fiji Platform, a remnant island arc that lies in a diffuse plate boundary zone between the Pacific and Australian tectonic plates in the SW Pacific. The upper crust of Viti Levu is dissected by numerous intersecting fault/lineament zones mapped from remote sensing imagery of the land surface (topography, radar and aerial photos) and basement (magnetic) and have been subject to rigorous statistical tests of reproducibility and verification with field mapped fault data. Lineaments on the various imagery correlate with faults mapped in the field, and show spatial continuity between and beyond mapped faults, thereby providing a fuller coverage of regional structural patterns than previously known. Some fault/lineaments zones extend beyond the coastline to the offshore area from the SE Viti Levu study area. Multibeam bathymetry and seismic reflection data show the fault zones occur along and exert control on the location of a number of submarine canyons on the SE slope of Viti Levu. Evidence for Late Quaternary fault activity is only rarely observed in onshore SE Viti Levu (e.g. by displaced shoreline features), and in seismic reflection profiles from offshore. The principal fault sets in Viti Levu represent generations of regional tectonic faulting that pervade the Fiji Platform during and after the disruption of the proto Fijian arc in the Middle to Late Miocene (~15Ma). These fault sets combine to form a complex network of interlocking faults creating a fault mesh that divides the upper crust into a number of fault blocks ranging from ~2-30 km wide. It is inferred that the fault mesh evolved throughout the Neogene as a response to the anticlockwise rotation of the Fiji Platform through progressive development of different fault sets and intervening crustal block rotations. Regional tectonic deformation is presently accommodated in a distributed manner through the entire fault mesh. Low magnitude earthquakes (<M4) occur regularly and may represent ruptures along short linking segments of the fault mesh, while infrequent larger earthquakes (>M4) may result from complex rupture propagation through several linking fault segments of the mesh that lie close to optimum stress orientations. The interpreted model of distributed deformation through the fault mesh for the study area in SE Viti Levu is inferred to be characteristic of the style of active deformation that occurs throughout the entire Fiji Platform.


Tectonics ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 2625-2645 ◽  
Author(s):  
Chuanyong Wu ◽  
Wenjun Zheng ◽  
Peizhen Zhang ◽  
Zhuqi Zhang ◽  
Qichao Jia ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 348
Author(s):  
Minxin You ◽  
Wenyuan Li ◽  
Houmin Li ◽  
Zhaowei Zhang ◽  
Xin Li

The Baixintan mafic-ultramafic intrusion in the Dananhu-Tousuquan arc of the Eastern Tianshan orogenic belt is composed of lherzolite, olivine gabbro, and gabbro. Olivine gabbros contain zircon grains with a U-Pb age of 276.8 ± 1.1 Ma, similar to the ages of other Early Permian Ni-Cu ore-bearing intrusions in the region. The alkaline-silica diagrams, AFM diagram, together with the Ni/Cu-Pd/Ir diagram, indicate that the parental magmas for the Baixintan intrusion were likely high-Mg tholeiitic basaltic in composition. The Cu/Pd ratios, the relatively depleted PGEs and the correlations between them demonstrate that the parental magmas had already experienced sulfide segregation. The lower CaO content in pyroxenites compared with the Duke Island Alaskan-type intrusion and the composition of spinels imply that Baixintan is not an Alaskan-type intrusion. By comparing the Baixintan intrusion with other specific mafic-ultramafic intrusions, this paper considers that the mantle source of the Baixintan intrusion is metasomatized by subduction slab-derived fluids’ components, which gives rise to the negative anomalies of Nb, Ti, and Ta elements. Nb/Yb-Th/Yb, Nb/Yb-TiO2/Yb, and ThN-NbN plots show that the Baixintan intrusion was emplaced in a back-arc spreading environment and may be related to a mantle plume.


Sign in / Sign up

Export Citation Format

Share Document