Solar wind density variations and the development of heliobiological effects during magnetic storms

2011 ◽  
Vol 47 (7) ◽  
pp. 795-804 ◽  
Author(s):  
T. A. Zenchenko
2015 ◽  
Vol 33 (5) ◽  
pp. 519-524 ◽  
Author(s):  
B. T. Tsurutani ◽  
R. Hajra ◽  
E. Echer ◽  
J. W. Gjerloev

Abstract. We examine particularly intense substorms (SML ≤–2500 nT), hereafter called "supersubstorms" or SSS events, to identify their nature and their magnetic storm dependences. It is found that these intense substorms are typically isolated events and are only loosely related to magnetic storms. SSS events can occur during super (Dst ≤–250 nT) and intense (−100 nT ≥ Dst >–250) magnetic storms. SSS events can also occur during nonstorm (Dst ≥–50 nT) intervals. SSSs are important because the strongest ionospheric currents will flow during these events, potentially causing power outages on Earth. Several SSS examples are shown. SSS events appear to be externally triggered by small regions of very high density (~30 to 50 cm−3) solar wind plasma parcels (PPs) impinging upon the magnetosphere. Precursor southward interplanetary magnetic fields are detected prior to the PPs hitting the magnetosphere. Our hypothesis is that these southward fields input energy into the magnetosphere/magnetotail and the PPs trigger the release of the stored energy.


2021 ◽  
Author(s):  
Andrey Samsonov ◽  
Jennifer A. Carter ◽  
Graziella Branduardi-Raymont ◽  
Steven Sembay

<p>On 16-17 June 2012, an interplanetary coronal mass ejection with an extremely high solar wind density (~100 cm<sup>-3</sup>) and mostly strong northward (or eastward) interplanetary magnetic field (IMF) interacted with the Earth’s magnetosphere. We have simulated this event using global MHD models. We study the magnetospheric response to two solar wind discontinuities. The first is characterized by a fast drop of the solar wind dynamic pressure resulting in rapid magnetospheric expansion. The second is a northward IMF turning which causes reconfiguration of the magnetospheric-ionospheric currents. We discuss variations of the magnetopause position and locations of the magnetopause reconnection in response to the solar wind variations. In the second part of our presentation, we present simulation results for the forthcoming SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) mission. SMILE is scheduled for launch in 2024. We produce two-dimensional images that derive from the MHD results of the expected X-ray emission as observed by the SMILE Soft X-ray Imager (SXI). We discuss how SMILE observations may help to study events like the one presented in this work.</p>


2021 ◽  
Author(s):  
Manuela Temmer ◽  
Lukas Holzknecht ◽  
Mateja Dumbovic ◽  
Bojan Vrsnak ◽  
Nishtha Sachdeva ◽  
...  

<p>Using combined STEREO-SOHO white-light data, we present a method to determine the volume and density of a coronal mass ejection (CME) by applying the graduated cylindrical shell model (GCS) and deprojected mass derivation. Under the assumption that the CME  mass is roughly equally distributed within a specific volume, we expand the CME self-similarly and calculate the CME density for distances close to the Sun (15–30 Rs) and at 1 AU. The procedure is applied on a sample of 29 well-observed CMEs and compared to their interplanetary counterparts (ICMEs). Specific trends are derived comparing calculated and in-situ measured proton densities at 1 AU, though large uncertainties are revealed due to the unknown mass and geometry evolution: i) a moderate correlation for the magnetic structure having a mass that stays rather constant and ii) a weak correlation for the sheath density by assuming the sheath region is an extra mass - as expected for a mass pile-up process - that is in its amount comparable to the initial CME deprojected mass. High correlations are derived between in-situ measured sheath density and the solar wind density and solar wind speed as measured 24 hours ahead of the arrival of the disturbance. This gives additional confirmation that the sheath-plasma indeed stems from piled-up solar wind material. While the CME interplanetary propagation speed is not related to the sheath density, the size of the CME may play some role in how much material is piled up.</p>


2021 ◽  
Author(s):  
Mikhail Fridman

<p>Mid-term prognoses of geomagnetic storms require an improvement since theу are known to have rather low accuracy which does not exceed 40% in solar minimum. We claim that the problem lies in the approach. Current mid-term forecasts are typically built using the same paradigm as short-term ones and suggest an analysis of the solar wind conditions typical for geomagnetic storms. According to this approach, there is a 20-60 minute delay between the arrival of a geoeffective flow/stream to L1 and the arrival of the signal from the spacecraft to Earth, which gives a necessary advance time for a short-term prognosis. For the mid-term forecast with an advance time from 3 hours to 3 days, this is not enough. Therefore, we have suggested finding precursors of geomagnetic storms observed in the solar wind. Such precursors are variations in the solar wind density and the interplanetary magnetic field in the ULF range associated with crossings of magnetic cavities in front of the arriving geoeffective high-speed streams and flows (Khabarova et al., 2015, 2016, 2018; Adhikari et al., 2019). Despite some preliminary studies have shown that this might be a perspective way to create a mid-term prognosis (Khabarova 2007; Khabarova & Yermolaev, 2007), the problem of automatization of the prognosis remained unsolved.</p>


2002 ◽  
Vol 20 (7) ◽  
pp. 957-965 ◽  
Author(s):  
R. H. A. Iles ◽  
A. N. Fazakerley ◽  
A. D. Johnstone ◽  
N. P. Meredith ◽  
P. Bühler

Abstract. The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)


Author(s):  
Michael W. Liemohn ◽  
Matt Jazowski ◽  
Janet U. Kozyra ◽  
Natalia Ganushkina ◽  
Michelle F. Thomsen ◽  
...  

Ninety intense magnetic storms (minimum Dst value of less than −100 nT) from solar cycle 23 (1996–2005) were simulated using the hot electron and ion drift integrator (HEIDI) model. All 90 storm intervals were run with several electric fields and nightside plasma boundary conditions (five run sets). Storms were classified according to their solar wind driver, including corotating interaction regions (CIRs) and interplanetary coronal mass ejections (ICMEs). Data-model comparisons were made against the observed Dst index (specifically, Dst*) and dayside hot-ion measurements from geosynchronous orbiting spacecraft. It is found that the data-model goodness-of-fit values are different for CIR-driven storms relative to ICME-driven storms. The results are also different for the same storm category for different boundary conditions. None of the CIR-driven events was overpredicted by HEIDI, while the dayside comparisons were comparable for the different drivers. The results imply that the outer magnetosphere is responding differently to the two kinds of solar wind drivers, even though the resulting storm size might be similar. That is, for ICME-driven events, magnetospheric currents inside of geosynchronous orbit dominate the Dst perturbation, while for CIR-driven events, currents outside of this boundary have a systematically larger contribution.


Sign in / Sign up

Export Citation Format

Share Document