Calabi–Yau Manifolds with Affine Structures

2018 ◽  
Vol 103 (3-4) ◽  
pp. 669-671
Author(s):  
V. N. Kokarev
2009 ◽  
Vol 43 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Gerald J. Schneider ◽  
D. Göritz

A novel theory is presented which allows, for the first time, the analytical description of small-angle scattering experiments on anisotropic shaped clusters of nanoparticles. Experimentally, silica-filled rubber which is deformed is used as an example. The silica can be modelled by solid spheres which form clusters. The experiments demonstrate that the clusters become anisotropic as a result of the deformation whereas the spheres are not affected. A comparison of the newly derived model function and the experiments provides, for the first time, microscopic evidence of the inhomogeneous deformation of clusters in the rubbery matrix.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Fernando Marchesano ◽  
Eran Palti ◽  
Joan Quirant ◽  
Alessandro Tomasiello

Abstract In this work we study ten-dimensional solutions to type IIA string theory of the form AdS4 × X6 which contain orientifold planes and preserve $$ \mathcal{N} $$ N = 1 supersymmetry. In particular, we consider solutions which exhibit some key features of the four-dimensional DGKT proposal for compactifications on Calabi-Yau manifolds with fluxes, and in this sense may be considered their ten-dimensional uplifts. We focus on the supersymmetry equations and Bianchi identities, and find solutions to these that are valid at the two-derivative level and at first order in an expansion parameter which is related to the AdS cosmological constant. This family of solutions is such that the background metric is deformed from the Ricci-flat one to one exhibiting SU(3) × SU(3)-structure, and dilaton gradients and warp factors are induced.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Magdalena Larfors ◽  
Davide Passaro ◽  
Robin Schneider

Abstract The systematic program of heterotic line bundle model building has resulted in a wealth of standard-like models (SLM) for particle physics. In this paper, we continue this work in the setting of generalised Complete Intersection Calabi Yau (gCICY) manifolds. Using the gCICYs constructed in ref. [1], we identify two geometries that, when combined with line bundle sums, are directly suitable for heterotic GUT models. We then show that these gCICYs admit freely acting ℤ2 symmetry groups, and are thus amenable to Wilson line breaking of the GUT gauge group to that of the standard model. We proceed to a systematic scan over line bundle sums over these geometries, that result in 99 and 33 SLMs, respectively. For the first class of models, our results may be compared to line bundle models on homotopically equivalent Complete Intersection Calabi Yau manifolds. This shows that the number of realistic configurations is of the same order of magnitude.


1994 ◽  
Vol 26 (6) ◽  
pp. 413-418 ◽  
Author(s):  
E Frey ◽  
U. C Täuber ◽  
F Schwabl

1996 ◽  
Vol 457 ◽  
Author(s):  
Aiichiro Nakano ◽  
Rajiv K. Kalia ◽  
Andrey Omeltchenko ◽  
Kenji Tsuruta ◽  
Priya Vashishta

ABSTRACTNew multiscale algorithms and a load-balancing scheme are combined for molecular-dynamics simulations of nanocluster-assembled ceramics on parallel computers. Million-atom simulations of the dynamic fracture in nanophase silicon nitride reveal anisotropie self-affine structures and crossover phenomena associated with fracture surfaces.


Strings '90 ◽  
1991 ◽  
pp. 401-429
Author(s):  
PHILIP CANDELAS ◽  
XENIA C. DE LA OSSA

Sign in / Sign up

Export Citation Format

Share Document