multiscale algorithms
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1510
Author(s):  
Mostafa Rostaghi ◽  
Mohammad Mahdi Khatibi ◽  
Mohammad Reza Ashory ◽  
Hamed Azami

Bearing vibration signals typically have nonlinear components due to their interaction and coupling effects, friction, damping, and nonlinear stiffness. Bearing faults affect the signal complexity at various scales. Hence, measuring signal complexity at different scales is helpful to diagnosis of bearing faults. Numerous studies have investigated multiscale algorithms; nevertheless, multiscale algorithms using the first moment lose important complexity data. Accordingly, generalized multiscale algorithms have been recently introduced. The present research examined the use of refined composite generalized multiscale dispersion entropy (RCGMDispEn) based on the second moment (variance) and third moment (skewness) along with refined composite multiscale dispersion entropy (RCMDispEn) in bearing fault diagnosis. Moreover, multiclass FCM-ANFIS, which is a combination of adaptive network-based fuzzy inference systems (ANFIS), was developed to improve the efficiency of rotating machinery fault classification. According to the results, it is recommended that generalized multiscale algorithms based on variance and skewness be examined for diagnosis, along with multiscale algorithms, and be used to achieve an improvement in the results. The simultaneous usage of the multiscale algorithm and generalized multiscale algorithms improved the results in all three real datasets used in this study.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tao Zhang ◽  
Yiteng Li ◽  
Jianchao Cai ◽  
Qingbang Meng ◽  
Shuyu Sun ◽  
...  

The special mechanisms underneath the flow and transport behaviors in unconventional reservoirs are still challenging an accurate and reliable production estimation. As an emerging approach in intelligent manufacturing, the concept of digital twin has attracted increasing attentions due to its capability of monitoring engineering processes based on modeling and simulation in digital space. The application potential is highly expected especially for problems with complex mechanisms and high data dimensions, because the utilized platform in the digital twin can be easily extended to cover more mechanisms and solve highly complicated problems with strong nonlinearity compared with experimental studies in physical space. In this paper, a digital twin is designed to numerically model the representative mechanisms that affect the production unconventional reservoirs, such as capillarity, dynamic sorption, and injection salinity, and it incorporates multiscale algorithms to simulate and illustrate the effect of these mechanisms on flow and transport phenomena. The preservation of physical laws among different scales is always the first priority, and simulation results are analyzed to verify the robustness of proposed multiscale algorithms.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Amgad Salama ◽  
Mohamed F. El Amin ◽  
Kundan Kumar ◽  
Shuyu Sun

A review on the recent advances of the flow and transport phenomena in tight and shale formations is presented in this work. Exploration of oil and gas in resources that were once considered inaccessible opened the door to highlight interesting phenomena that require attention and understanding. The length scales associated with transport phenomena in tight and shale formations are rich. From nanoscale phenomena to field-scale applications, a unified frame that is able to encounter the varieties of phenomena associated with each scale may not be possible. Each scale has its own tools and limitations that may not, probably, be suitable at other scales. Multiscale algorithms that effectively couple simulations among various scales of porous media are therefore important. In this article, a review of the different length scales and the tools associated with each scale is introduced. Highlights on the different phenomena pertinent to each scale are summarized. Furthermore, the governing equations describing flow and transport phenomena at different scales are investigated. In addition, methods to solve these equations using numerical techniques are introduced. Cross-scale analysis and derivation of linear and nonlinear Darcy’s scale laws from pore-scale governing equations are described. Phenomena occurring at molecular scales and their thermodynamics are discussed. Flow slippage at the nanosize pores and its upscaling to Darcy’s scale are highlighted. Pore network models are discussed as a viable tool to estimate macroscopic parameters that are otherwise difficult to measure. Then, the environmental aspects associated with the different technologies used in stimulating the gas stored in tight and shale formations are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document