Chlorophyll, primary production, fluxes, and balance of organic carbon in the Laptev Sea

2008 ◽  
Vol 46 (10) ◽  
pp. 1055-1063 ◽  
Author(s):  
A. A. Vetrov ◽  
E. A. Romankevich ◽  
N. A. Belyaev
2011 ◽  
Vol 8 (2) ◽  
pp. 2093-2143 ◽  
Author(s):  
I. P. Semiletov ◽  
I. I. Pipko ◽  
N. E. Shakhova ◽  
O. V. Dudarev ◽  
S. P. Pugach ◽  
...  

Abstract. The Lena River integrates biogeochemical signals from its vast drainage basin and its signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered a quasi-equilibrated processes. Increasing the Lena discharge causes opposite effects on total organic (TOC) and inorganic (TCO2) carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (TC) has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge, because a negative correlation may be found between TC in September and mean discharge in August (a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea). Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C y−1. The annual Lena River discharge of particulate organic carbon (POC) may be equal to 0.38 Tg (moderate to high estimate). If we instead accept Lisytsin's (1994) statement concerning the precipitation of 85–95% of total particulate matter (PM) (and POC) on the marginal "filter", then only about 0.03–0.04 Tg of POC reaches the Laptev Sea from the Lena River. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is about 4 Tg. The Lena River is characterized by relatively high concentrations of primary greenhouse gases: CO2 and dissolved CH4. During all seasons the river is supersaturated in CO2 compared to the atmosphere: up to 1.5–2 fold in summer, and 4–5 fold in winter. This results in a narrow zone of significant CO2 supersaturation in the adjacent coastal sea. Spots of dissolved CH4 in the Lena delta channels may reach 100 nM, but the CH4 concentration decreases to 5–20 nM towards the sea, which suggests only a minor role of riverborne export of CH4 for the East Siberian Arctic Shelf (ESAS) CH4 budget in coastal waters. Instead, the seabed appears to be the source that provides most of the CH4 to the Arctic Ocean.


2019 ◽  
Vol 59 (5) ◽  
pp. 755-770
Author(s):  
A. B. Demidov ◽  
V. I. Gagarin ◽  
E. G. Arashkevich ◽  
P. N. Makkaveev ◽  
I. V. Konyukhov ◽  
...  

Spatial distribution of phytoplankton primary production and chlorophyll was studied based on the data of three cruises carried out in AugustSeptember of 2015, 2017 and 2018. The average value of water column primary production (IPP) along the transect from Lena`s mouth to the continental slope was 2.8 fold higher than that one along the transect from Khatanga`s mouth, which was explained by the level of incident radiation and nutrients concentration. Along the cross-slope transects increasing of photosynthetically layer integrated chlorophyll (Chlph) occurred due to developing of deep maxima. IPP and Chlph increasing was registered in the vicinity of the continental slope. In AugustSeptember the averaged IPP value was 100 mgC m-2 d-1 that is the evidence of oligotrophy of the Laptev Sea at the end of summer and at the beginning of autumn.


Oceanology ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 50-61 ◽  
Author(s):  
A. B. Demidov ◽  
S. V. Sheberstov ◽  
V. I. Gagarin

Oceanology ◽  
2020 ◽  
Vol 60 (2) ◽  
pp. 189-204
Author(s):  
A. B. Demidov ◽  
V. I. Gagarin ◽  
V. A. Artemiev ◽  
E. G. Arashkevich ◽  
P. N. Makkaveev ◽  
...  

2018 ◽  
Vol 15 (2) ◽  
pp. 471-490 ◽  
Author(s):  
Volker Brüchert ◽  
Lisa Bröder ◽  
Joanna E. Sawicka ◽  
Tommaso Tesi ◽  
Samantha P. Joye ◽  
...  

Abstract. The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC); δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC ∕ NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr−1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C yr−1 is degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg yr−1.


2021 ◽  
Author(s):  
Olga Ogneva ◽  
Gesine Mollenhauer ◽  
Matthias Fuchs ◽  
Juri Palmtag ◽  
Tina Sanders ◽  
...  

<p>Rapid climate warming in the Arctic intensifies permafrost thaw, increases active layer depth in summer and enhances riverbank and coastal erosion. All of these cause additional release of organic matter (OM) into streams and rivers. OM will be (1) transformed and modified during transport and subsequently discharged into the Arctic Ocean, or (2) removed from the active cycling by sedimentation. Here, the nearshore zone (which includes deltas, estuaries and coasts) is of great importance, where the major transformation processes of terrestrial material take place. Despite the importance of deltas for the biogeochemical cycle, their functioning is poorly understood. For our study we examined the Lena River nearshore, which represents the world’s third largest delta and supplies the second highest annual water and sediment discharge into the Arctic Ocean. Running through almost the entirety of East Siberia from Lake Baikal to the Laptev Sea, the Lena River drains an area of ∼2,61×10<sup>6</sup> km<sup>2</sup>  with approximately 90% underlain by permafrost. Our aims were to investigate the spatial variation of OM concentration and isotopic composition during transit from terrestrial permafrost source to the ocean interface, and to compare riverine and deltaic OM composition. We measured particulate and dissolved organic carbon (POC and DOC) concentrations and their associated δ<sup>13</sup>C and ∆<sup>14</sup>C values in water samples collected along a ∼1500 km long Lena River transect from Yakutsk downstream to the river outlet into the Laptev Sea.</p><p>We find significant qualitative and quantitative differences between the OM composition in the Lena River main channel and its delta. Further, we found suspended matter and POC concentrations decreased during transit from river to the Arctic Ocean.  DOC concentrations in the Lena delta were almost 50% lower than OM from the main channel. We found that deltaic POC is depleted in <sup>13</sup>C relative to fluvial POC, and that its <sup>14</sup>C signature suggests a modern composition indicating phytoplankton origin. This observation likely reflects the difference in hydrological conditions between the delta and the river main channel, caused by lower flow velocity and average water depth. We propose that deltaic environments provide favorable growth conditions for riverine primary producers such as algae and aquatic plants. Deltaic DOC is depleted in <sup>14</sup>C compared to riverine, especially in samples taken from the water surface, which indicates contributions from an additional old carbon stock source, specific for the Lena Delta. We suggest that this C is released from deltaic bank erosion and partly stays floating on the surface. In conclusion, we found a strong impact of deltaic processes on the fate and dominant signatures of OM discharged into the Arctic Ocean.</p>


2019 ◽  
Vol 98 ◽  
pp. 06006
Author(s):  
Elena Gershelis ◽  
Ivan Goncharov ◽  
Oleg Dudarev ◽  
Alexey Ruban ◽  
Igor Semiletov

Here we present lithological and geochemical characteristics of the core drilled in coastal part of the Laptev Sea (Ivashkina Lagoon, Bykovsky Peninsula). It is shown that for sediments accumulated in specific lagoon conditions the increased content of organic carbon is confined to fine-grained lacustrine and lagoonal sediments in the uppermost layers. Pyrolytic analysis results indicate a sharp variability in the content of total organic carbon and volatile organic compounds across the studied horizons. The distribution of n-alkanes is characterized by the dominance of high molecular weight homologues, which indicates the ubiquitous contribution of higher terrestrial vegetation discharged with river and coastal thermo abrasion fluxes to the organic matter of bottom sediments.


2020 ◽  
Author(s):  
Irina Oberemok ◽  
Elena Gershelis ◽  
Andrey Grin’ko ◽  
Alexey Ruban ◽  
Elizaveta Klevantseva ◽  
...  

<p>Accelerating coastal erosion and enhancing river sediment discharge are expected to greatly increase the delivery of terrestrial organic carbon (terrOC) to the Arctic Ocean. Remobilized terrOC may be buried in shallow or outer shelf sediments, degraded and translocated to the deeper basins, or remineralized in the water column causing a positive feedback to amplified global warming. The East Siberian Arctic Shelf (ESAS), represented by the Laptev Sea, the East Siberian Sea, and the Russian part of the Chukchi Sea, is the widest and shallowest continental shelf of the World Ocean. In the current study, we investigated surface sediment samples collected across the Laptev Sea shelf (from the coastline to the outer shelf) during the Arctic expedition onboard the Russian <em>R/V Academician M. Keldysh</em> during fall 2018.</p><p>We analyzed 16 samples for bulk (TOC, <em>δ</em>13C) and molecular (distribution and concentration of n-alkanes and PAHs) parameters. We also performed Rock-Eval (RE) analysis in order to compare its results with the signatures provided by traditional geochemical tracers and thereby to gain new insights into the sources of organic matter in modern surface sediments. In addition, a grain-size analysis was carried out to reveal hydrodynamic control on the organic carbon transport across the studied transect. Using a combination of traditional molecular interpretations (performed in this study and published earlier) and RE parameters (Hydrogen index, Oxygen index and T<sub>peak</sub>) we attempted to distinguish riverine input and coastal erosion and disentangle processes of terrOC degradation and its replacement with fresh/marine OC during cross-shelf transport. Overall, a strong decrease of terrigenous contribution to the sedimentary organic carbon was observed on molecular level with increasing distance from the coast. According to the RE data, intensive terrOC degradation takes place in the shallow and mid-shelf sediments which is traced by sharply increasing oxygen index. The clear correlation between OI and the clay content points toward the perception that mineral matrix do not seem to be such good protector as expected, and intensive microbial degradation of the sedimentary organic matter contained in fine particles occurs during repeated resuspension.</p><p>This research is supported by Russian Science Foundation, project # 19-77-00067.</p>


Sign in / Sign up

Export Citation Format

Share Document