annual primary production
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

Resources ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 93
Author(s):  
Anthony E. Hughes ◽  
Nawshad Haque ◽  
Stephen A. Northey ◽  
Sarbjit Giddey

The major applications of PGMs are as catalysts in automotive industry, petroleum refining, environmental (gas remediation), industrial chemical production (e.g., ammonia production, fine chemicals), electronics, and medical fields. As the next generation energy technologies for hydrogen production, such as electrolysers and fuel cells for stationary and transport applications, become mature, the demand for PGMs is expected to further increase. Reserves and annual production of Ru, Rh, Pd, Ir, and Pt have been determined and reported. Based on currently available resources, there is around 200 years lifetime based on current demand for all PGMs, apart from Pd, which may be closer to 100 years. Annual primary production of 190 t/a for Pt and 217 t/a for Pd, in combination with recycling of 65.4 t/a for Pt and 97.2 t/a for Pd, satisfies current demand. By far, the largest demand for PGMs is for all forms of catalysis, with the largest demand in auto catalysis. In fact, the biggest driver of demand and price for Pt, Pd, and Rh, in particular, is auto emission regulation, which has driven auto-catalyst design. Recovery of PGMs through recycling is generally good, but some catalytic processes, particularly auto-catalysis, result in significant dissipation. In the US, about 70% of the recycling stream from the end-of-life vehicles is a significant source of global secondary PGMs recovered from spent auto-catalyst. The significant use of PGMs in the large global auto industry is likely to continue, but the long-term transition towards electric vehicles will alter demand profiles.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Marie Pierrejean ◽  
David G. Babb ◽  
Frédéric Maps ◽  
Christian Nozais ◽  
Philippe Archambault

The seasonal sea ice cover and the massive influx of river runoff into the Hudson Bay System (HBS) of the Canadian Arctic are critical factors influencing biological production and, ultimately, the dynamics and structure of benthic communities in the region. This study provides the most recent survey of epibenthic communities in Hudson Bay and Hudson Strait and explores their relationships with environmental variables, including mean annual primary production and particulate organic carbon in surface water, bottom oceanographic variables, and substrate type. Epibenthic trawl samples were collected at 46 stations, with a total of 380 epibenthic taxa identified, representing 71% of the estimated taxa within the system. Three communities were defined based on biomass and taxonomic composition. Ordination analyses showed them to be associated primarily with substrate type, salinity, and annual primary production. A first community, associated with coarse substrate, was distributed along the coastlines and near the river mouths. This community was characterized by the lowest density and taxonomic richness and the highest biomass of filter and suspension feeders. A second community, composed mostly of deposit feeders and small abundant epibenthic organisms, was associated with soft substrate and distributed in the deepest waters. A third community, associated with mixed substrate and mostly located near polynyas, was characterized by high diversity and biomass, with no clearly dominant taxon. The overall analysis indicated that bottom salinity and surface-water particulate organic carbon content were the main environmental drivers of these epibenthic community patterns. In the face of climate change, projections of increased river inflow and a longer open water season for the HBS could have major impacts on these epibenthic communities, emphasizing a need to continually improve our ability to evaluate and predict shifts in epibenthic richness and distribution.


Biology Open ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. bio048058 ◽  
Author(s):  
Marc Bonola ◽  
Marc Girondot ◽  
Jean-Patrice Robin ◽  
Jordan Martin ◽  
Flora Siegwalt ◽  
...  

2017 ◽  
Vol 38 (3) ◽  
pp. 351-373 ◽  
Author(s):  
Zofia T. Smoła ◽  
Agnieszka Tatarek ◽  
Józef M. Wiktor ◽  
Józef M.W. Wiktor ◽  
Anna Kubiszyn ◽  
...  

Abstract Hornsund and Kongsfjorden are two similar-sized Arctic fjords on the West coast of Spitsbergen. They are influenced by cold coastal Arctic water (Hornsund) and warmer Atlantic water (Kongsfjorden). Environmental conditions affect the timing, quantity, spatial distribution (horizontal and vertical) of spring and summer blooms of protists as well as the taxonomic composition of those assemblages. Here, we compile published data and unpublished own measurement from the past two decades to compare the environmental factors and primary production in two fjord systems. Kongsfjorden is characterized by a deeper euphotic zone, higher biomass and greater proportion of autotrophic species. Hornsund seems to obtain more nutrients due to the extensive seabird colonies and exhibits higher turbidity compared to Kongsfjorden. The annual primary production in the analysed fjords ranges from 48 g C m−2 y−1 in Kongsfjorden to 216 g C m−2 y−1 in Hornsund, with a dominant component of microplankton (90%) followed by macrophytes and microphytobenthos.


Author(s):  
L.V. Stelmakh ◽  

Seasonal variability of phytoplankton biomass, “pure” primary production and its share consumed micro¬zooplankton, as well as the specific microzooplankton grazing rate of phytoplankton for the surface layer (0-1 m) in coastal waters of the Black Sea was studied. Almost 80% of the total annual primary’ produc¬tion of phytoplankton is created by phytoplankton with the average cell volume .from 150 to 4000 mm3. The main share of annual primary production, eaten by microzooplankton (86%) is also associated with these algae sized groups.


Polar Biology ◽  
2015 ◽  
Vol 39 (3) ◽  
pp. 543-552 ◽  
Author(s):  
T. Riis ◽  
K. S. Christoffersen ◽  
A. Baattrup-Pedersen

Sign in / Sign up

Export Citation Format

Share Document