Influence of the plasma zonal E × B drift on the electron concentration in the low-latitude ionospheric F region at the minimum of solar activity near the spring equinox

2008 ◽  
Vol 48 (4) ◽  
pp. 479-490 ◽  
Author(s):  
A. V. Pavlov ◽  
N. M. Pavlova ◽  
A. D. Shevnin
2003 ◽  
Vol 21 (3) ◽  
pp. 745-750 ◽  
Author(s):  
K. Niranjan ◽  
P. S. Brahmanandam ◽  
P. Ramakrishna Rao ◽  
G. Uma ◽  
D. S. V. V. D. Prasad ◽  
...  

Abstract. A study carried out on the occurrence of post midnight spread-F events at a low-latitude station, Waltair (17.7° N, 83.3° E), India revealed that its occurrence is maximum in the summer solstice months of the low solar activity period and decreases with an increase in the sunspot activity. The F-region virtual height variations show that 80% of these spread-F cases are associated with an increase in the F-region altitude. It is suggested with the support of the night airglow 6300 A zenith intensity data obtained with co-located ground-based night airglow photometer and electron temperature data from the Indian SROSS C2 satellite that the seasonal variation of the occurrence and probable onset times of the post midnight spread-F depend on the characteristics of the highly variable semipermanent equatorial Midnight Temperature Maximum (MTM).Key words. Ionosphere (ionospheric irregularities; ionosphere atmosphere interactions) Atmospheric composition and structure (airglow and Aurora)


2011 ◽  
Vol 47 (4) ◽  
pp. 718-728 ◽  
Author(s):  
R. de Jesus ◽  
Y. Sahai ◽  
F.L. Guarnieri ◽  
P.R. Fagundes ◽  
A.J. de Abreu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 36 (2) ◽  
pp. 459-471 ◽  
Author(s):  
Amelia Naomi Onohara ◽  
Inez Staciarini Batista ◽  
Paulo Prado Batista

Abstract. The main purpose of this study is to investigate the four-peak structure observed in the low-latitude equatorial ionosphere by the FORMOSAT/COSMIC satellites. Longitudinal distributions of NmF2 (the density of the F layer peak) and hmF2 (ionospheric F2-layer peak height) averages, obtained around September equinox periods from 2007 to 2015, were submitted to a bi-spectral Fourier analysis in order to obtain the amplitudes and phases of the main waves. The four-peak structure in the equatorial and low-latitude ionosphere was present in both low and high solar activity periods. This kind of structure possibly has tropospheric origins related to the tidal waves propagating from below that modulate the E-region dynamo, mainly the eastward non-migrating diurnal tide with wavenumber 3 (DE3, E for eastward). This wave when combined with the migrating diurnal tide (DW1, W for westward) presents a wavenumber-4 (wave-4) structure under a synoptic view. Electron densities observed during 2008 and 2013 September equinoxes revealed that the wave-4 structures became more prominent around or above the F-region altitude peak (∼  300–350 km). The four-peak structure remains up to higher ionosphere altitudes (∼  800 km). Spectral analysis showed DE3 and SPW4 (stationary planetary wave with wavenumber 4) signatures at these altitudes. We found that a combination of DE3 and SPW4 with migrating tides is able to reproduce the wave-4 pattern in most of the ionospheric parameters. For the first time a study using wave variations in ionospheric observations for different altitude intervals and solar cycle was done. The conclusion is that the wave-4 structure observed at high altitudes in ionosphere is related to effects of the E-region dynamo combined with transport effects in the F region.


2010 ◽  
Vol 72 (17) ◽  
pp. 1309-1317 ◽  
Author(s):  
Praveen Galav ◽  
N. Dashora ◽  
S. Sharma ◽  
R. Pandey

2010 ◽  
Author(s):  
M. R. Bekli ◽  
D. Aissani ◽  
I. Chadou ◽  
N. Mebarki ◽  
J. Mimouni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document