Effects of uncertainty of excitation condition on error of method of fundamental parameters in X-ray fluorescence analysis

2011 ◽  
Vol 47 (14) ◽  
pp. 1518-1521 ◽  
Author(s):  
B. D. Kalinin ◽  
R. I. Plotnikov ◽  
Yu. I. Sergeev
2020 ◽  
Vol 86 (10) ◽  
pp. 5-9
Author(s):  
D. G. Filatova ◽  
A. A. Arkhipenko ◽  
M. A. Statkus ◽  
V. V. Es’kina ◽  
V. B. Baranovskaya ◽  
...  

An approach to sorptive separation of Se (IV) from solutions on a novel S,N-containing sorbent with subsequent determination of the analyte in the sorbent phase by micro-x-ray fluorescence method is presented. The sorbent copolymethylenesulfide-N-alkyl-methylenamine (CMA) was synthesized using «snake in the cage» procedure and proven to be stable in acid solutions. Conditions for quantitative extraction of Se (IV) were determined: sorption in 5 M HCl or 0.05 M HNO3 solutions when heated to 60°C, phase contact time being 1 h. The residual selenium content in the solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) using 82Se isotope. The absence of selenium losses is proved and the mechanism of sorption interaction under specified conditions is proposed. The method of micro-x-ray fluorescence analysis (micro-RFA) with mapping revealed a uniform distribution of selenium on the sorbent surface. The possibility of determining selenium in the sorbent phase by micro-RFA is shown. When comparing the obtained results with the results of calculations by the method of fundamental parameters, it is shown the necessity of using standard samples of sorbates to obtain correct results of RFA determination of selenium in the sorbent phase.


1991 ◽  
Vol 35 (B) ◽  
pp. 749-754
Author(s):  
V. I. Karmanov ◽  
V. V. Zagorodny

AbstractThe fundamental parameters method (FPM) enables one to determine with high accuracy the chemical composition of homogeneous samples, having only one reference sample. However, the reference sample composition should be similar to that of the samples analyzed.The x-ray fluorescence analysis of multicomponent heterogeneous materials (ores, minerals, their mixtures, welding electrode coating mixtures, fluxes, etc.) is made by the Δμ-correction method based on the combined use of the fundamental and empirical correlations maintaining all the advantages of the FPM. Sample composition is calculated on the basis of the element intensities measured in the sample and in the reference specimen and is corrected for the disturbing effect of excitation conditions and heterogeneity as well as the calculated values of one of the fundamental parameters (μ1). At the preliminary stage of calibration, the coefficients are determined using regression and the absolute fundamental expression for the element fluorescence intensity.


1991 ◽  
Vol 35 (B) ◽  
pp. 737-742
Author(s):  
V. I. Smolniakov

AbstractSome x-ray fluorescence - concentration relationships in the framework of XRF were researched. Fundamental calculation approaches for primary fluorescence and incoherent scattering were realized for evaluation of matrix influence. A new binary approach was produced for the cases considered, and its unification was related to the empirical and regression types of the “standard background” technique, widely used in the analytical practice of XRF. It is confirmed that application of the calculations by fundamental parameters (FP) in combination with the empirical approach allows the reduction of the set of standards (to as few as one) in the analysis procedure with wide variations in matrices and concentrations, without loss of accuracy.


1976 ◽  
Vol 20 ◽  
pp. 515-528 ◽  
Author(s):  
Daniel Laguitton ◽  
Michael Mantler

A comprehensive Fortran IV program designed to perform the matrix correction in x-ray fluorescence analysis is described. Specimens and standards can be in bulk or film form. All necessary fundamental parameters are provided by internal routines thereby requiring a minimum of input data.


1979 ◽  
Vol 23 ◽  
pp. 93-97 ◽  
Author(s):  
J. W. Criss

Fundamental-parameters calculations can be made on a laboratory microcomputer fo r automatic treatment of interelement absorption and enhancement effects in x-ray fluorescence analysis. A new software package, called XRF-11, uses an efficient combination of fundamental parameters and alpha factors to compensate for any lack of measured reference materials, while taking full advantage of whatever standards are available, even just pure elements. In many cases, one multi-element standard is enough for accurate analysis.The new XRF-11 software uses the same data base of absorption coefficients, fluorescence yields, etc. as the big-computer program NRLXRF, and combines theory with experiment in a consis tent way that is similar to, but more efficient than, the treatment used in NRLXRF.


2014 ◽  
Vol 29 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Michael Mantler

This paper summarizes an oral presentation of the same title presented at the occasion of recognizing the “The 100th Anniversary of X-ray Spectroscopy” at DXC 2013. It gives an overview of the development in electronics with focus on (mainly) energy-dispersive X-ray detectors and related data processing. Naturally this has its origin in the early transistors and the first semiconductor junction detectors of the late 1940s. It was followed by refinement of semiconductor detector technology in general and particularly by the invention of Li-drifting and employment of low-noise field effect transistors until such devices matured sufficiently to be marketed by the late 1960s. Further improvement followed in resolution, speed, operability at room temperature, and development of junction arrays with imaging capabilities. An important aspect is the development of related software requiring affordable laboratory computers, programming languages, and databases of fundamental parameters. Today x-ray fluorescence analysis (and not only the energy-dispersive variant) is widely employed as an analytical tool for the traditional technical and industrial applications but notably also, at an expanding rate as well as variety, in other fields including environmental, medical, archaeological, space, arts, and many more.


1979 ◽  
Vol 23 ◽  
pp. 111-115
Author(s):  
J. W. Criss

AbstractOn the basis of fundamental-parameters calculations of x-ray fluorescence intensities, it is predicted that relative intensities much greater than one can be observed from thick, homogeneous samples. That is , the intensity of a particular line from a mixture of two or more elements can be much greater than the intensity from the pure element. Similarly, the intensity from a mixture of compounds can be greater than the intensity from a pure sample of the compound containing the emitting element.


1979 ◽  
Vol 23 ◽  
pp. 71-76
Author(s):  
Peggy Dalheim

The elemental analysis of geologic samples such as rocks, minerals and coal ash is a complicated task because of their wide, complex compositional range. Energy dispersive x-ray fluorescence (EDXRF) can provide a rapid, accurate and precise way of analyzing geologic samples. Two approaches to reducing EDXRF intensity data to elemental concentrations are the empirical approach and the fundamental parameters (theoretical) approach. Empirical methods require numerous standards within restricted compositional ranges so can become complex, time consuming and, therefore, expensive if diverse suites of samples are to be analyzed for many elements. Fundamental parameters, on the other hand, requires knowledge of physical constants such as mass absorption coefficients, jump ratios and fluorescent yields, and only one matrix independent standard to calculate a calibration constant for each element making it an ideal approach to the analysis of diverse geologic samples.


Sign in / Sign up

Export Citation Format

Share Document