Complex dielectric permittivity and electrical conductivity of (TlGaSe2)1–х (TlInS2) х solid solutions in an AC electric field

2016 ◽  
Vol 52 (11) ◽  
pp. 1096-1102 ◽  
Author(s):  
S. N. Mustafaeva ◽  
S. M. Asadov ◽  
M. M. Gojaev ◽  
A. B. Magerramov
Author(s):  
Sema Türkay ◽  
Adem Tataroğlu

AbstractRF magnetron sputtering was used to grow silicon nitride (Si3N4) thin film on GaAs substrate to form metal–oxide–semiconductor (MOS) capacitor. Complex dielectric permittivity (ε*), complex electric modulus (M*) and complex electrical conductivity (σ*) of the prepared Au/Si3N4/p-GaAs (MOS) capacitor were studied in detail. These parameters were calculated using admittance measurements performed in the range of 150 K-350 K and 50 kHz-1 MHz. It is found that the dielectric constant (ε′) and dielectric loss (ε″) value decrease with increasing frequency. However, as the temperature increases, the ε′ and ε″ increased. Ac conductivity (σac) was increased with increasing both temperature and frequency. The activation energy (Ea) was determined by Arrhenius equation. Besides, the frequency dependence of σac was analyzed by Jonscher’s universal power law (σac = Aωs). Thus, the value of the frequency exponent (s) were determined.


2019 ◽  
Vol 27 (2) ◽  
pp. 85-88
Author(s):  
T. V. Panchenko ◽  
L. M. Karpova

The temperature-frequency dependences of the complex dielectric permittivity ε and the voltage-farad characteristics of undoped and aluminum doped Bi12SiO20 crystals are studied before and after their polarization. It is shown that Al ions in the Bi12SiO20 dielectric matrix provide a significant increase as well as nonlinearity of ε in the temperature range 300 – 800 K and electric field strengths Е = 103 – 104 V/cm. It is shown that polarization causes the appearance of dielectric hysteresis loops. Al impurity significantly affects the appearance and parameters of these loops. The role of Al ions in increasing the contribution of the quasi-dipole mechanism in the polarization processes is revealed.


2006 ◽  
Vol 40 (9) ◽  
pp. 1021-1024 ◽  
Author(s):  
A. E. Kozhanov ◽  
A. V. Nikorich ◽  
L. I. Ryabova ◽  
D. R. Khokhlov

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. E159-E176 ◽  
Author(s):  
S. Misra ◽  
C. Torres-Verdín ◽  
A. Revil ◽  
J. Rasmus ◽  
D. Homan

Hydrocarbon-bearing conventional formations, mudrock formations, and source-rock formations generally contain clays, pyrite, magnetite, graphitelike carbon, and/or other electrically conductive mineral inclusions. Under redox-inactive conditions, these inclusions give rise to perfectly polarized interfacial polarization (PPIP) when subjected to an external electric field. Effective electrical conductivity and dielectric permittivity of geomaterials containing such inclusions are frequency-dependent properties due to the electric-field-induced interfacial polarization and associated charge relaxation around host-inclusion interfaces. Existing resistivity interpretation techniques do not account for PPIP phenomena, and hence they can lead to inaccurate estimation of water saturation, total organic content, and conductivity of formation water based on subsurface galvanic resistivity, electromagnetic (EM) induction, and EM propagation measurements in the presence of conductive mineral inclusions. In the first paper of our two-part publication series, we derived a mechanistic electrochemical model, the PPIP model, and we validated a coupled model that integrates the PPIP model with a surface-conductance-assisted interfacial polarization (SCAIP) model to quantify the frequency-dependent electrical complex conductivity of geomaterials. We have used the PPIP-SCAIP model to evaluate the dependence of effective complex-valued conductivity of geologic mixtures on (1) frequency, (2) conductivity of the host medium, and (3) material, size, and the shape of inclusions. Notably, we have used the PPIP-SCAIP model to identify rock conditions that give rise to significant differences in effective conductivity and effective relative permittivity of conductive-inclusion-bearing mixtures from those of conductive-inclusion-free homogeneous media. For a mixture containing as low as a 5% volume fraction of disseminated conductive inclusions, the low-frequency effective conductivity of the mixture is in the range of [Formula: see text] to [Formula: see text] with respect to the host conductivity for frequencies between 100 Hz and 100 kHz. Further, the high-frequency effective relative permittivity of that mixture is in the range of [Formula: see text] to [Formula: see text] with respect to the host relative permittivity for frequencies between 100 kHz and 10 MHz.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1443-1448 ◽  
Author(s):  
Yasuhito Misono ◽  
Shoichi Furukawa ◽  
Hitomi Yosinaga ◽  
Junko Sugiyama ◽  
Keishi Negita

Varying the electric field strength (E), the ER effect, the dielectric permittivity, and the electrical conductivity were simultaneously measured on the Ba 0.75 Sr 0.25 TiO 3 suspension. It was found that at high E the ER effect increased with the frequency (f), while at low E it once decreased and then increased with increase in f. At high E, the dielectric permittivity at low frequencies was much larger than that at high frequencies, indicating that an electrode polarization was formed as a result of accumulations of ions, which were dissociated from the liquid at high E, near the electrodes. This electrode polarization was further confirmed in the time dependence of the electrical conductivity after the electric field was switched on. From these results it is suggested that the E-dependent frequency dependence of the ER effect may be due to the electrode polarization, which causes larger shielding of the applied electric field at lower f while smaller shielding at higher f.


Sign in / Sign up

Export Citation Format

Share Document