High-voltage solid-state switches for microsecond pulse power

2014 ◽  
Vol 57 (2) ◽  
pp. 140-143 ◽  
Author(s):  
M. V. Malashin ◽  
S. I. Moshkunov ◽  
I. E. Rebrov ◽  
V. Yu. Khomich ◽  
E. A. Shershunova
2014 ◽  
Vol 26 (4) ◽  
pp. 45044 ◽  
Author(s):  
黄伟民 Huang Weimin ◽  
邵涛 Shao Tao ◽  
张东东 Zhang Dongdong ◽  
马浩 Ma Hao ◽  
严萍 Yan Ping ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 11958-11967
Author(s):  
Zhongran Yao ◽  
Kongjun Zhu ◽  
Xia Li ◽  
Jie Zhang ◽  
Jun Li ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


2021 ◽  
Author(s):  
Gabriele Lingua ◽  
Patrick Grysan ◽  
Petr S. Vlasov ◽  
Pierre Verge ◽  
Alexander S. Shaplov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document