Isolation and investigation of anaerobic microorganisms involved in methanol transformation in an underground gas storage facility

Microbiology ◽  
2011 ◽  
Vol 80 (2) ◽  
pp. 172-179 ◽  
Author(s):  
A. L. Tarasov ◽  
I. A. Borzenkov ◽  
N. A. Chernykh ◽  
S. S. Belyayev
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5463
Author(s):  
Anna Turkiewicz ◽  
Teresa Steliga ◽  
Dorota Kluk ◽  
Zbigniew Gminski

The article discusses the results of biomonitoring research at the Underground Gas Storage (UGS). Hydrogen sulphide, as one of the products of microbiological reaction and transformation, as well as a product of chemical reactions in rocks, is a subject of interest for global petroleum companies. The materials used in this research work were formation waters and stored natural gas. The biomonitoring of reservoir waters and cyclical analyses of the composition of gas stored at UGS Wierzchowice enabled the assessment of the microbiological condition of the reservoir environment and individual storage wells in subsequent years of operation. Investigations of the formation water from individual wells of the UGS Wierzchowice showed the presence of sulphate reducing bacteria bacteria (SRB), such as Desulfovibrio and Desulfotomaculum genera and bacteria that oxidize sulphur compounds. In the last cycles of UGS Wierzchowice, the content of hydrogen sulphide and sulphides in the reservoir waters ranged from 1.22 to 15.5 mg/dm3. The monitoring of natural gas received from UGS production wells and observation wells, which was carried out in terms of the determination of hydrogen sulphide and organic sulphur compounds, made it possible to observe changes in their content in natural gas in individual storage cycles. In the last cycles of UGS Wierzchowice, the content of hydrogen sulphide in natural gas from production wells ranged from 0.69 to 2.89 mg/dm3, and the content of organic sulphur compounds converted to elemental sulphur ranged from 0.055 to 0.130 mg Sel./Nm3. A higher hydrogen sulphide content was recorded in natural gas from observation wells in the range of 2.02–25.15 mg/Nm3. In order to explain the causes of hydrogen sulphide formation at UGS Wierzchowice, isotopic analyses were performed to determine the isotope composition of δ34SH2S, δ34SSO4, δ18OSO4 in natural gas samples (production and observation wells) and in the deep sample of reservoir water. The results of isotope tests in connection with microbiological tests, chromatographic analyses of sulphur compounds in natural gas collected from UGS Wierzchowice and an analysis of the geological structure of the Wierzchowice deposit allow us to conclude that the dominant processes responsible for the formation of hydrogen sulphide at UGS Wierzchowice are microbiological, consisting of microbial sulphate reduction (MSR). The presented tests allow for the control and maintenance of hydrogen sulphide at a low level in the natural gas received from the Wierzchowice Underground Gas Storage facility.


2019 ◽  
Vol 124 (8) ◽  
pp. 8753-8770 ◽  
Author(s):  
Pengcheng Zhou ◽  
Hongfeng Yang ◽  
Baoshan Wang ◽  
Jiancang Zhuang

2016 ◽  
Vol 46 (2) ◽  
pp. 125-135
Author(s):  
Lukáš Kopal ◽  
Pavel Čížek ◽  
Ján Milička

Abstract The Lobodice underground gas storage (UGS) is developed in a natural aquifer reservoir located in the Central Moravian part of the Carpathian Foredeep in the Czech Republic. In order to learn more about the UGS geological structure a 3D seismic survey was performed in 2009. The reservoir is rather shallow, 400–500 m below the surface. This article describes the process workflow from the 3D seismic field data acquisition to the creation of the geological model. The outcomes of this workflow define the geometry of the UGS reservoir, its tectonics and the sealing features of the structure. Better geological knowledge of the reservoir will reduce the risks involved in the localization of new wells for increasing UGS withdrawal rates.


Author(s):  
M.K. Tupysev

The features of man-made deformation processes during the creation and operation of underground gas storage facilities in developed gas and gas condensate deposits, as well as in water-saturated reservoirs, are shown. The possibility of deformation of reservoirs in underground gas storage facilities with the lowering of the Earth’s surface is justified, provided that the sea pressure is lowered below the value achieved at the end of the field development, as well as the initial one at the time of the creation of a storage facility in the water-saturated reservoirs.


Sign in / Sign up

Export Citation Format

Share Document