Hysteresis of the Grain-Boundary Mobility of the [10$$\overline{1}$$0] Tilt Boundaries in Zinc

2020 ◽  
Vol 2020 (10) ◽  
pp. 1045-1049
Author(s):  
V. G. Sursaeva
Author(s):  
Blas P. Uberuaga ◽  
Pauline Simonnin ◽  
Kevin M. Rosso ◽  
Daniel K. Schreiber ◽  
Mark Asta

AbstractMass transport along grain boundaries in alloys depends not only on the atomic structure of the boundary, but also its chemical make-up. In this work, we use molecular dynamics to examine the effect of Cr alloying on interstitial and vacancy-mediated transport at a variety of grain boundaries in Ni. We find that, in general, Cr tends to reduce the rate of mass transport, an effect which is greatest for interstitials at pure tilt boundaries. However, there are special scenarios in which it can greatly enhance atomic mobility. Cr tends to migrate faster than Ni, though again this depends on the structure of the grain boundary. Further, grain boundary mobility, which is sometimes pronounced for pure Ni grain boundaries, is eliminated on the time scales of our simulations when Cr is present. We conclude that the enhanced transport and grain boundary mobility often seen in this system in experimental studies is the result of non-equilibrium effects and is not intrinsic to the alloyed grain boundary. These results provide new insight into the role of grain boundary alloying on transport that can help in the interpretation of experimental results and the development of predictive models of materials evolution.


2005 ◽  
Vol 495-497 ◽  
pp. 1231-1236
Author(s):  
Vera G. Sursaeva

Texture formation during secondary recrystallization depends on the nature of secondary recrystallization process itself. So microstructure evolution and texture development during secondary recrystallization should be discussed concurrently. The main goal of the paper is studying of the effect of internal stresses on grain boundary motion or, more generally, the interaction of grain boundaries with stress fields and the effect of deformation inhomogeniety on grain boundary mobility during secondary recrystallization. Considering transformation from normal grain growth to secondary recrystallization, the attempt was made to characterize the microstructure and to relate it to the processes of nucleation and growth of new rains. The nucleation process is heterogeneous. The data allow us to assume that the nuclei are strain free grains.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 370
Author(s):  
Chih-Ting Lai ◽  
Hsuan-Hao Lai ◽  
Yen-Hao Su ◽  
Fei-Ya Huang ◽  
Chi-Kang Lin ◽  
...  

In this study, the effects of the addition of Mg to the grain growth of austenite and the magnesium-based inclusions to mobility were investigated in SS400 steel at high temperatures. A high-temperature confocal scanning laser microscope (HT-CSLM) was employed to directly observe, in situ, the grain structure of austenite under 25 torr Ar at high temperatures. The grain size distribution of austenite showed the log-normal distribution. The results of the grain growth curves using 3D surface fitting showed that the n and Q values of the growth equation parameters ranged from 0.2 to 0.26 and from 405 kJ/mole to 752 kJ/mole, respectively, when adding 5.6–22 ppm of Mg. Increasing the temperature from 1150 to 1250 °C for 20 min and increasing the addition of Mg by 5.6, 11, and 22 ppm resulted in increases in the grain boundary velocity. The effects of solute drag and Zener pinning on grain boundary mobility were also calculated in this study.


1961 ◽  
Vol 9 (10) ◽  
pp. 960-961 ◽  
Author(s):  
M.J. Fraser ◽  
R.E. Gold ◽  
W.W. Mullins

2004 ◽  
Vol 467-470 ◽  
pp. 745-750 ◽  
Author(s):  
Nong Moon Hwang

Although it has been generally believed that the advantage of the grain boundary mobility induces abnormal grain growth (AGG), it is suggested that the advantage of the low grain boundary energy, which favors the growth by solid-state wetting, induces AGG. Analyses based on Monte Carlo (MC) simulation show that the approach by solid-state wetting could explain AGG much better than that by grain boundary mobility. AGG by solid-state wetting is supported not only by MC simulations but also by the experimental observation of microstructure evolution near or at the growth front of abnormally growing grain. The microstructure shows island grains and solid-state wetting along grain boundary and triple junction.


Sign in / Sign up

Export Citation Format

Share Document