Genetic variation and population differentiation in Siberian fir Abies sibirica ledeb. inferred from allozyme markers

2006 ◽  
Vol 42 (6) ◽  
pp. 636-644 ◽  
Author(s):  
S. A. Semerikova ◽  
V. L. Semerikov
2013 ◽  
Vol 62 (1-6) ◽  
pp. 127-136 ◽  
Author(s):  
P. Androsiuk ◽  
A. Shimono ◽  
J. Westin ◽  
D. Lindgren ◽  
A. Fries ◽  
...  

AbstractEfficient use of any breeding resources requires a good understanding of the genetic value of the founder breeding materials for predicting the gain and diversity in future generations. This study evaluates the distribution of genetic variation and level of relatedness among and within nine breeding populations of Norway spruce for Northern Sweden using nuclear microsatellite markers. A sample set of 456 individuals selected from 140 stands were genotyped with 15 SSR loci. Over all loci each individual was identified with unique multilocus genotype. High genetic diversity (average He=0.820) and low population differentiation (FST=0.0087) characterized this material. Although low in FST, the two northernmost populations were clustered as a distinct group diverged from the central populations. The population differentiation pattern corresponds well with the post glacial migration history of Norway spruce and the current gene flow and human activity in the region. The average inbreeding coefficient was 0.084 after removal loci with high frequency of null alleles. The estimated relatedness of the trees gathered in the breeding populations was very low (average kinship coefficient 0.0077) and not structured. The high genetic variation and low and not structured relatedness between individuals found in the breeding populations confirm that the Norway spruce breeding stock for northern Sweden represent valuable genetic resources for both long-term breeding and conservation programs.


2020 ◽  
Vol 35 (5) ◽  
pp. 452-464
Author(s):  
Päivi H. Leinonen ◽  
Matti J. Salmela ◽  
Kathleen Greenham ◽  
C. Robertson McClung ◽  
John H. Willis

Environmental variation along an elevational gradient can yield phenotypic differentiation resulting from varying selection pressures on plant traits related to seasonal responses. Thus, genetic clines can evolve in a suite of traits, including the circadian clock, that drives daily cycling in varied traits and that shares its genetic background with adaptation to seasonality. We used populations of annual Mimulus laciniatus from different elevations in the Sierra Nevada in California to explore among-population differentiation in the circadian clock, flowering responses to photoperiod, and phenological traits (days to cotyledon emergence, days to flowering, and days to seed ripening) in controlled common-garden conditions. Further, we examined correlations of these traits with environmental variables related to temperature and precipitation. We observed that the circadian period in leaf movement was differentiated among populations sampled within about 100 km, with population means varying by 1.6 h. Significant local genetic variation occurred within 2 populations in which circadian period among families varied by up to 1.8 h. Replicated treatments with variable ecologically relevant photoperiods revealed marked population differentiation in critical day length for flowering that ranged from 11.0 to 14.1 h, corresponding to the time period between late February and mid-May in the wild. Flowering time varied among populations in a 14-h photoperiod. Regardless of this substantial population-level diversity, obvious linear clinality in trait variability across elevations could not be determined based on our genotypic sample; it is possible that more complex spatial patterns of variation arise in complex terrains such as those in the Sierra Nevada. Moreover, we did not find statistically significant bivariate correlations between population means of different traits. Our research contributes to the understanding of genetic variation in the circadian clock and in seasonal responses in natural populations, highlighting the need for more comprehensive investigations on the association between the clock and other adaptive traits in plants.


2007 ◽  
Vol 38 (4) ◽  
pp. 246-252 ◽  
Author(s):  
E. V. Bazhina ◽  
O. V. Kvitko ◽  
E. N. Muratova
Keyword(s):  

2013 ◽  
Vol 92 (2) ◽  
pp. 1817-1826 ◽  
Author(s):  
Elena N. Makarova ◽  
Olga A. Patova ◽  
Evgeny G. Shakhmatov ◽  
Sergey P. Kuznetsov ◽  
Yury S. Ovodov

Trees ◽  
2017 ◽  
Vol 32 (2) ◽  
pp. 511-518 ◽  
Author(s):  
Gleb A. Zaitsev ◽  
Alexey Yu. Kulagin ◽  
Alexander N. Davydychev

1995 ◽  
Vol 25 (12) ◽  
pp. 2010-2021 ◽  
Author(s):  
Chang-Yi Xie ◽  
Cheng C. Ying

The genetic architecture and adaptive landscape of interior lodgepole pine (Pinuscontorta ssp. latifolia Engelm. ex S. Wats.) in Canada were investigated in a provenance–family plantation located in central British Columbia. Fifty-three natural populations were sampled from three geographic regions covering the entire Canadian range, and their performance in growth and survival was recorded periodically over 20 years. Test results indicate that genetic variation among regions and among populations within regions was highly significant in all the traits investigated and accounted for, respectively, 53% and 41% of the total genetic variation in growth and 41% and 54% in survival. Within-population variation was also significant in growth but not in survival. Interior lodgepole pine in the central region demonstrated less genetic variation than in the northern and southern regions at both the population and family levels. In addition, the proportion of genetic variation associated with population was lower in the central region than in the other regions. Population differentiation in both growth and survival showed discernible elevational and geographic patterns. Regression models describing these adaptive patterns accounted for more than 80% of the among-population variation, and their veracity was verified with independent data. Populations of northern, coastal–interior transition, and high-elevation origin tended to have smaller trees with higher mortality. However, the patterns were not linear but differed in slope and (or) direction among regions. The adaptedness of populations tended to decrease as they were farther away from their origin, with a few exceptions displaying broad adaptation across more than 3° of latitude. As the test proceeded, population differentiation became more evident and adaptive clines became steeper. Some practical implications of these findings have been discussed.


Sign in / Sign up

Export Citation Format

Share Document