DNA Damage Tolerance in the Yeast Saccharomyces cerevisiae

2021 ◽  
Vol 57 (4) ◽  
pp. 379-389
Author(s):  
E. A. Alekseeva ◽  
V. G. Korolev
2020 ◽  
Author(s):  
E. A. Alekseeva ◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev

Abstract In eukaryotes, DNA damage tolerance (DDT) is determined by two repair pathways, homologous repair recombination (HRR) and a pathway controlled by the RAD6-epistatic group of genes. Monoubiquitylation of PCNA mediates an error-prone pathway, whereas polyubiquitylation stimulates an error-free pathway. The error-free pathway involves components of recombination repair; however, the factors that act in this pathway remain largely unknown. Here, we report that the HIM1 gene participates in error-free DDT. Notably, inactivation RAD30 gene encoding Polη completely suppresses him1-dependent UV mutagenesis. Furthermore, data obtained show a significant role of Polη in him1-dependent mutagenesis, especially at non-bipyrimidine sites (NBP sites). We demonstrate that him1 mutation significantly reduces the efficiency of the induction expression of RNR genes after UV irradiation. Besides, this paper presents evidence that significant increase in the dNTP levels suppress him1-dependent mutagenesis. Our findings show that Polη responsible for him1-dependent mutagenesis.


Genetics ◽  
2017 ◽  
Vol 206 (1) ◽  
pp. 513-525 ◽  
Author(s):  
Karol Kramarz ◽  
Seweryn Mucha ◽  
Ireneusz Litwin ◽  
Anna Barg-Wojas ◽  
Robert Wysocki ◽  
...  

Author(s):  
Matan Arbel ◽  
Batia Liefshitz ◽  
Martin Kupiec

ABSTRACT What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.


2020 ◽  
Vol 477 (14) ◽  
pp. 2655-2677
Author(s):  
Li Fan ◽  
Tonghui Bi ◽  
Linxiao Wang ◽  
Wei Xiao

DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.


2018 ◽  
Author(s):  
Alison K. Thurston ◽  
Catherine A. Radebaugh ◽  
Adam R. Almeida ◽  
Juan Lucas Argueso ◽  
Laurie A. Stargell

AbstractCells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA damage tolerance pathway includes two sub-pathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence sub-pathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1, a chromatin binding and transcription elongation factor, in DNA damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological lifespan. We attribute these effects to an increased usage of the template switch branch of the DNA damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.


2015 ◽  
Vol 764 ◽  
pp. 43-50 ◽  
Author(s):  
Xin Xu ◽  
Susan Blackwell ◽  
Aiyang Lin ◽  
Fangfang Li ◽  
Zhoushuai Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document