scholarly journals Rad5 Template Switch Pathway of DNA Damage Tolerance Determines Synergism between Cisplatin and NSC109268 in Saccharomyces cerevisiae

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77666 ◽  
Author(s):  
Dilip Jain ◽  
Wolfram Siede
2018 ◽  
Author(s):  
Alison K. Thurston ◽  
Catherine A. Radebaugh ◽  
Adam R. Almeida ◽  
Juan Lucas Argueso ◽  
Laurie A. Stargell

AbstractCells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA damage tolerance pathway includes two sub-pathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence sub-pathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1, a chromatin binding and transcription elongation factor, in DNA damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological lifespan. We attribute these effects to an increased usage of the template switch branch of the DNA damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.


2020 ◽  
Vol 21 (3) ◽  
pp. 693 ◽  
Author(s):  
Mareike Seelinger ◽  
Marit Otterlei

To prevent replication fork collapse and genome instability under replicative stress, DNA damage tolerance (DDT) mechanisms have evolved. The RAD5 homologs, HLTF (helicase-like transcription factor) and SHPRH (SNF2, histone-linker, PHD and RING finger domain-containing helicase), both ubiquitin ligases, are involved in several DDT mechanisms; DNA translesion synthesis (TLS), fork reversal/remodeling and template switch (TS). Here we show that these two human RAD5 homologs contain functional APIM PCNA interacting motifs. Our results show that both the role of HLTF in TLS in HLTF overexpressing cells, and nuclear localization of SHPRH, are dependent on interaction of HLTF and SHPRH with PCNA. Additionally, we detected multiple changes in the mutation spectra when APIM in overexpressed HLTF or SHPRH were mutated compared to overexpressed wild type proteins. In plasmids from cells overexpressing the APIM mutant version of HLTF, we observed a decrease in C to T transitions, the most common mutation caused by UV irradiation, and an increase in mutations on the transcribed strand. These results strongly suggest that direct binding of HLTF and SHPRH to PCNA is vital for their function in DDT.


2020 ◽  
Author(s):  
E. A. Alekseeva ◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev

Abstract In eukaryotes, DNA damage tolerance (DDT) is determined by two repair pathways, homologous repair recombination (HRR) and a pathway controlled by the RAD6-epistatic group of genes. Monoubiquitylation of PCNA mediates an error-prone pathway, whereas polyubiquitylation stimulates an error-free pathway. The error-free pathway involves components of recombination repair; however, the factors that act in this pathway remain largely unknown. Here, we report that the HIM1 gene participates in error-free DDT. Notably, inactivation RAD30 gene encoding Polη completely suppresses him1-dependent UV mutagenesis. Furthermore, data obtained show a significant role of Polη in him1-dependent mutagenesis, especially at non-bipyrimidine sites (NBP sites). We demonstrate that him1 mutation significantly reduces the efficiency of the induction expression of RNR genes after UV irradiation. Besides, this paper presents evidence that significant increase in the dNTP levels suppress him1-dependent mutagenesis. Our findings show that Polη responsible for him1-dependent mutagenesis.


Genetics ◽  
2017 ◽  
Vol 206 (1) ◽  
pp. 513-525 ◽  
Author(s):  
Karol Kramarz ◽  
Seweryn Mucha ◽  
Ireneusz Litwin ◽  
Anna Barg-Wojas ◽  
Robert Wysocki ◽  
...  

2020 ◽  
Vol 477 (14) ◽  
pp. 2655-2677
Author(s):  
Li Fan ◽  
Tonghui Bi ◽  
Linxiao Wang ◽  
Wei Xiao

DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 614 ◽  
Author(s):  
Takuya Abe ◽  
Dana Branzei ◽  
Kouji Hirota

DNA replication is an essential biochemical reaction in dividing cells that frequently stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs. These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review, we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed light on DDT mode usage in vertebrate cells and tolerance of abasic sites.


2015 ◽  
Vol 764 ◽  
pp. 43-50 ◽  
Author(s):  
Xin Xu ◽  
Susan Blackwell ◽  
Aiyang Lin ◽  
Fangfang Li ◽  
Zhoushuai Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document