dna damage tolerance
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 49)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Katarzyna H Maslowska ◽  
Vincent Pagès

DNA Damage Tolerance (DDT) funcPons to bypass replicaPon-blocking lesions and is divided into two disPnct pathways: error-prone Translesion Synthesis (TLS) and error-free Damage Avoidance (DA). Rad5 is an important player in these processes. Indeed, Saccharomyces cerevisiae Rad5 is a large mulPfuncPonal protein that contains three well defined domains: a RING domain that promotes PCNA polyubiquiPnaPon and a ssDNA-dependent ATPase/helicase domain, that are both conserved in Rad5 human ortholog HLTF. Yeast Rad5 also contains a Rev1-binding domain. In this study we used domain-specific mutants to address the contribuPon of each of the Rad5 funcPons to lesion tolerance. Using an assay based on the inserPon of a single lesion into a defined locus in the genome of a living yeast cell, we demonstrate that Rad5 plays opposite roles in lesion tolerance: i) Rad5 favors error-free lesion bypass by acPvaPng template switching through polyubiquiPnaPon of PCNA; ii) Rad5 is also required for TLS by recruiPng the TLS polymerase Rev1. We also show that the helicase acPvity does not play any role in lesion tolerance/


2021 ◽  
Author(s):  
Eva Ibars ◽  
Gemma Belli ◽  
Celia Casas ◽  
Joan Codina-Fabra ◽  
Marc Tarres ◽  
...  

Ubiquitination controls numerous cellular processes, and its deregulation is associated to many pathologies. The Nse1 subunit in the Smc5/6 complex contains a RING domain with ubiquitin E3 ligase activity and important functions in genome integrity. However, Nse1-dependent ubiquitin targets remain largely unknown. Here, we use label-free quantitative proteomics to analyse the nuclear ubiquitinome of nse1-C274A RING mutant cells. Our results show that Nse1 impacts on the ubiquitination of several proteins involved in DNA damage tolerance, ribosome biogenesis and metabolism that, importantly, extend beyond canonical functions of the Smc5/6 complex in chromosome segregation. In addition, our analysis uncovers an unexpected connection between Nse1 and RNA polymerase I (RNAP I) ubiquitination. Specifically, Nse1 promotes the ubiquitination of K408 and K410 in A190, the largest subunit of RNAP I, to induce its degradation. We propose that this mechanism contributes to Smc5/6-dependent rDNA disjunction in response to transcriptional elongation defects.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1543
Author(s):  
Jun Che ◽  
Xin Hong ◽  
Hai Rao

DNA lesions escaping from repair often block the DNA replicative polymerases required for DNA replication and are handled during the S/G2 phases by the DNA damage tolerance (DDT) mechanisms, which include the error-prone translesion synthesis (TLS) and the error-free template switching (TS) pathways. Where the mono-ubiquitylation of PCNA K164 is critical for TLS, the poly-ubiquitylation of the same residue is obligatory for TS. However, it is not known how cells divide the labor between TLS and TS. Due to the fact that the type of DNA lesion significantly influences the TLS and TS choice, we propose that, instead of altering the ratio between the mono- and poly-Ub forms of PCNA, the competition between TLS and TS would automatically determine the selection between the two pathways. Future studies, especially the single integrated lesion “i-Damage” system, would elucidate detailed mechanisms governing the choices of specific DDT pathways.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yitian Guo ◽  
Melanie Rall-Scharpf ◽  
Jean-Christophe Bourdon ◽  
Lisa Wiesmüller ◽  
Stephanie Biber

AbstractThe recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1550
Author(s):  
Félix Prado

The DNA damage tolerance (DDT) response is aimed to timely and safely complete DNA replication by facilitating the advance of replication forks through blocking lesions. This process is associated with an accumulation of single-strand DNA (ssDNA), both at the fork and behind the fork. Lesion bypass and ssDNA filling can be performed by translation synthesis (TLS) and template switching mechanisms. TLS uses low-fidelity polymerases to incorporate a dNTP opposite the blocking lesion, whereas template switching uses a Rad51/ssDNA nucleofilament and the sister chromatid to bypass the lesion. Rad51 is loaded at this nucleofilament by two mediator proteins, BRCA2 and Rad52, and these three factors are critical for homologous recombination (HR). Here, we review recent advances showing that Rad51, BRCA2, and Rad52 perform some of these functions through mechanisms that do not require the strand exchange activity of Rad51: the formation and protection of reversed fork structures aimed to bypass blocking lesions, and the promotion of TLS. These findings point to the central HR proteins as potential molecular switches in the choice of the mechanism of DDT.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5544
Author(s):  
Radha Charan Dash ◽  
Kyle Hadden

Translesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions. The importance of TLS in both the initial response to chemotherapy and the long-term development of acquired resistance has allowed it to emerge as an interesting target for small molecule drug discovery. Proper TLS function is a complicated process involving a heteroprotein complex that mediates multiple attachment and switching steps through several protein–protein interactions (PPIs). In this review, we briefly describe the importance of TLS in cancer and provide an in-depth analysis of key TLS PPIs, focusing on key structural features at the PPI interface while also exploring the potential druggability of each key PPI.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2275
Author(s):  
Devon M. Fitzgerald ◽  
Susan M Rosenberg

The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman’s vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.


2021 ◽  
Vol 4 (10) ◽  
pp. e202000966
Author(s):  
Menattallah Elserafy ◽  
Iman El-Shiekh ◽  
Dalia Fleifel ◽  
Reham Atteya ◽  
Abdelrahman AlOkda ◽  
...  

Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas A. Guilliam

The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.


Sign in / Sign up

Export Citation Format

Share Document