Y-Chromosome Markers in Population Genetics: Fundamental and Applied Results of Ethnogenomic Research

2021 ◽  
Vol 57 (9) ◽  
pp. 989-1001
Author(s):  
V. N. Kharkov
1997 ◽  
Vol 45 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Anna Pérez-Lezaun ◽  
Francesc Calafell ◽  
Mark Seielstad ◽  
Eva Mateu ◽  
David Comas ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Santiago de Sousa Azulay ◽  
Luís Cristóvão Porto ◽  
Dayse Aparecida Silva ◽  
Maria da Glória Tavares ◽  
Roberta Maria Duailibe Ferreira Reis ◽  
...  

AbstractThis study aimed to investigate the relationship between genetic ancestry inferred from autosomal and Y chromosome markers and HLA genotypes in patients with Type 1 Diabetes from an admixed Brazilian population. Inference of autosomal ancestry; HLA-DRB1, -DQA1 and -DQB1 typifications; and Y chromosome analysis were performed. European autosomal ancestry was about 50%, followed by approximately 25% of African and Native American. The European Y chromosome was predominant. The HLA-DRB1*03 and DRB1*04 alleles presented risk association with T1D. When the Y chromosome was European, DRB1*03 and DRB1*04 homozygote and DRB1*03/DRB1*04 heterozygote genotypes were the most frequent. The results suggest that individuals from Maranhão have a European origin as their major component; and are patrilineal with greater frequency from the R1b haplogroup. The predominance of the HLA-DRB1*03 and DRB1*04 alleles conferring greater risk in our population and being more frequently related to the ancestry of the European Y chromosome suggests that in our population, the risk of T1D can be transmitted by European ancestors of our process miscegenation. However, the Y sample sizes of Africans and Native Americans were small, and further research should be conducted with large mixed sample sizes to clarify this possible association.


2020 ◽  
Vol 56 (7) ◽  
pp. 849-855
Author(s):  
V. N. Kharkov ◽  
L. M. Novikova ◽  
O. V. Shtygasheva ◽  
F. A. Luzina ◽  
I. Yu. Khitrinskaya ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1273
Author(s):  
Katherine Parker ◽  
A. Mesut Erzurumluoglu ◽  
Santiago Rodriguez

The Human Y chromosome (ChrY) has been demonstrated to be a powerful tool for phylogenetics, population genetics, genetic genealogy and forensics. However, the importance of ChrY genetic variation in relation to human complex traits is less clear. In this review, we summarise existing evidence about the inherent complexities of ChrY variation and their use in association studies of human complex traits. We present and discuss the specific particularities of ChrY genetic variation, including Y chromosomal haplogroups, that need to be considered in the design and interpretation of genetic epidemiological studies involving ChrY.


Author(s):  
Tatiana Karafet ◽  
Stephen L. Zegura ◽  
Jennifer Vuturo-Brady ◽  
Olga Posukh ◽  
Ludmila Osipova ◽  
...  

Author(s):  
Y. V. Bogunov ◽  
◽  
O. V. Maltseva ◽  
A. A. Bogunova ◽  
E. V. Balanovskaya ◽  
...  

2014 ◽  
Vol 50 (2) ◽  
pp. 180-190 ◽  
Author(s):  
V. N. Kharkov ◽  
K. V. Khamina ◽  
O. F. Medvedeva ◽  
K. V. Simonova ◽  
E. R. Eremina ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009758
Author(s):  
Sofie Claerhout ◽  
Paulien Verstraete ◽  
Liesbeth Warnez ◽  
Simon Vanpaemel ◽  
Maarten Larmuseau ◽  
...  

Male-specific Y-chromosome (chrY) polymorphisms are interesting components of the DNA for population genetics. While single nucleotide polymorphisms (Y-SNPs) indicate distant evolutionary ancestry, short tandem repeats (Y-STRs) are able to identify close familial kinships. Detailed chrY analysis provides thus both biogeographical background information as paternal lineage identification. The rapid advancement of high-throughput massive parallel sequencing (MPS) technology in the past decade has revolutionized genetic research. Using MPS, single-base information of both Y-SNPs as Y-STRs can be analyzed in a single assay typing multiple samples at once. In this study, we present the first extensive chrY-specific targeted resequencing panel, the ‘CSYseq’, which simultaneously identifies slow mutating Y-SNPs as evolution markers and rapid mutating Y-STRs as patrilineage markers. The panel was validated by paired-end sequencing of 130 males, distributed over 65 deep-rooted pedigrees covering 1,279 generations. The CSYseq successfully targets 15,611 Y-SNPs including 9,014 phylogenetic informative Y-SNPs to identify 1,443 human evolutionary Y-subhaplogroup lineages worldwide. In addition, the CSYseq properly targets 202 Y-STRs, including 81 slow, 68 moderate, 27 fast and 26 rapid mutating Y-STRs to individualize close paternal relatives. The targeted chrY markers cover a high average number of reads (Y-SNP = 717, Y-STR = 150), easy interpretation, powerful discrimination capacity and chrY specificity. The CSYseq is interesting for research on different time scales: to identify evolutionary ancestry, to find distant family and to discriminate closely related males. Therefore, this panel serves as a unique tool valuable for a wide range of genetic-genealogical applications in interdisciplinary research within evolutionary, population, molecular, medical and forensic genetics.


2015 ◽  
Vol 14 ◽  
pp. 210-218 ◽  
Author(s):  
Jorge Mario Cárdenas ◽  
Tanja Heinz ◽  
Jacobo Pardo-Seco ◽  
Vanesa Álvarez-Iglesias ◽  
Patricia Taboada-Echalar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document