scholarly journals Kinetic Mechanism for Modelling of Electrochemical Mediatedenzyme Reactions and Determination of Enzyme Kinetics Parameters

2018 ◽  
Vol 54 (11) ◽  
pp. 783-795
Author(s):  
O. M. Kirthiga ◽  
L. Rajendran ◽  
Carlos Fernandez
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gianluca Trinco ◽  
Valentina Arkhipova ◽  
Alisa A. Garaeva ◽  
Cedric A. J. Hutter ◽  
Markus A. Seeger ◽  
...  

AbstractIt is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s−1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


1991 ◽  
Vol 38 (4) ◽  
pp. 434-437 ◽  
Author(s):  
F. Galgani ◽  
Y. Cadiou ◽  
G. Bocquene
Keyword(s):  

2002 ◽  
Vol 57 (11-12) ◽  
pp. 1072-1077 ◽  
Author(s):  
Karel Komers ◽  
Alexandr Čegan ◽  
Marek Link

Kinetics and mechanism of hydrolysis of acetylthiocholine by the enzyme butyrylcholine esterase was studied. The spectrophotometric Ellman’s method and potentiometric pH-stat method were used for continuous determination of the actual concentration of the products thiocholine and acetic acid in the reaction mixture. The validity of the Michaelis-Menten (Briggs-Haldane) equation in the whole course of the reaction under used conditions was proved. The corresponding kinetics parameters (Vm and KM) were calculated from the obtained dependences of concentration of thiocholine or acetic acid vs. time and compared. From this comparison the deciding kinetic role of the step producing thiocholine was derived. The values of initial molar concentration of the enzyme and of the rate constants of the kinetic model were estimated.


2003 ◽  
Vol 68 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Vladimir Leskovac ◽  
Svetlana Trivic ◽  
Draginja Pericin

In this work, all the rate constants in the kinetic mechanism of the yeast alcohol dehydrogenase-catalyzed oxidation of ethanol by NAD+, at pH 7.0, 25 ?C, have been estimated. The determination of the individual rate constants was achieved by fitting the reaction progress curves to the experimental data, using the procedures of the FITSIM and KINSIM software package of Carl Frieden. This work is the first report in the literature showing the internal equilibrium constants for the isomerization of the enzyme-NAD+ complex in yeast alcohol dehydrogenase-catalyzed reactions.


1997 ◽  
Vol 75 (4) ◽  
pp. 341-351 ◽  
Author(s):  
C. Furetta ◽  
G. Kitis ◽  
J.H. Kuo ◽  
L. Vismara ◽  
P.S. Weng

Sign in / Sign up

Export Citation Format

Share Document