Areas and sources of metasedimentary rocks in the Tukuringra terrane of the Mongolian–Okhotsk mobile belt: Results of Sm–Nd isotope study

2016 ◽  
Vol 470 (1) ◽  
pp. 961-964 ◽  
Author(s):  
A. A. Sorokin ◽  
A. P. Sorokin ◽  
A. B. Kotov ◽  
V. P. Kovach ◽  
Yu. V. Plyaskin
2018 ◽  
Vol 482 (1) ◽  
pp. 1138-1141 ◽  
Author(s):  
V. P. Kovach ◽  
A. B. Kotov ◽  
D. P. Gladkochub ◽  
E. V. Tolmacheva ◽  
S. D. Velikoslavinsky ◽  
...  
Keyword(s):  
Icp Ms ◽  

1987 ◽  
Vol 96 (4) ◽  
pp. 455-464 ◽  
Author(s):  
A. P. Dickin ◽  
N. W. Jones ◽  
M. F. Thirlwall ◽  
R. N. Thompson

2018 ◽  
Vol 156 (5) ◽  
pp. 833-848 ◽  
Author(s):  
R. M. MOUMBLOW ◽  
G. A. ARCURI ◽  
A. P. DICKIN ◽  
C. F. GOWER

AbstractThe Makkovik Province of eastern Labrador represents part of an accretionary orogen active during an early stage in the development of the Palaeoproterozoic southern Laurentian continental margin. New Nd isotope data for the eastern Makkovik Province suggest that accreted juvenile Makkovik crust was generated in the Cape Harrison domain during a single crust-forming event at c. 2.0 Ga. Pb isotope data support this model, and show a strong similarity to radiogenic crustal signatures in the juvenile Palaeoproterozoic crust of the Ketilidian mobile belt of southern Greenland. As previously proposed, an arc accretion event at c. 1.9 Ga triggered subduction-zone reversal and the development of an ensialic arc on the composite margin. After the subduction flip, a temporary release of compressive stress at c. 1.87 Ga led to the development of a retro-arc foreland basin on the downloaded Archean continental edge, forming the Aillik Group. Unlike previous models, a second arc is not envisaged. Instead, a compressive regime at c. 1.82 Ga is attributed to continued ensialic arc plutonism on the existing margin. The tectonic model for the Makkovikian orogeny proposed here is similar to that for the Ketilidian orogeny. Major- and trace-element analyses suggest that much of the magmatism in the Makkovik orogen results from post-accretionary ensialic arc activity, and that few vestiges remain of the original accreted volcanic arc. This pattern of arc accretion and intense post-accretion reworking is common to many accretionary orogens, such as the South American Andes and North American Cordillera.


1995 ◽  
Vol 32 (2) ◽  
pp. 224-245 ◽  
Author(s):  
Andrew Kerr ◽  
George A. Jenner ◽  
Brian J. Fryer

In the Eastern Central Mobile Belt of the Newfoundland Appalachians, late Precambrian basement inliers have εNd from −3 to +2, but Cambro-Ordovician metasedimentary rocks have initial εNd below −7. This region is inferred to have an "inverted" crustal residence structure, which influenced subsequent Appalachian-cycle magmatism. Ordovician and Silurian granitoid suites have εNd of −8 to −2, bracketing both basement and cover, but peraluminous, "S-type" granites have the lowest εNd. Devonian granites have initial εNd values from −5 to +1, and low εNd is associated with peraluminous character. These Paleozoic granites show geographic trends, with lowest εNd values in areas where metasedimentary rocks are abundant. They are suggested to contain anatectic material from both Precambrian basement and metasedimentary cover, but some "I-type" suites probably also include a mantle-derived component. In the adjacent Avalon Zone, Precambrian plutonic suites mostly have εNd from +1 to +6, but there are negative εNd values (−8 to −4) in the westernmost Avalon Zone. Devonian plutonic suites mostly have εNd from +2 to +5. Thus, the Precambrian crust of the Avalon Zone is largely "juvenile," except at its westernmost edge. Contrasts across the Eastern Central Mobile Belt–Avalon Zone boundary, defined by the Dover–Hermitage Bay fault system, indicate a major, crustal-scale structure, and suggest an isotopically distinct "central block" beneath the central Appalachian Orogen, rather than a simple extension of "Avalonian" crust. Similar geographic–isotopic patterns have been reported in Nova Scotia and New Brunswick, suggesting that this pattern represents a first-order deep-crustal subdivision of the northern Appalachian Orogen.


Sign in / Sign up

Export Citation Format

Share Document