Image segmentation using optimal and hierarchical piecewise-constant approximations

2014 ◽  
Vol 24 (3) ◽  
pp. 409-417 ◽  
Author(s):  
M. V. Kharinov
2011 ◽  
Vol 103 ◽  
pp. 705-710 ◽  
Author(s):  
Yu Jie Li ◽  
Hui Min Lu ◽  
Li Feng Zhang ◽  
Shi Yuan Yang ◽  
Serikawa Seiichi

Digital X/γ-ray imaging technology has been widely used to help people deliver effective and reliable security in airports, train stations, and public buildings. Nowadays, luggage inspection system with digital radiographic/computed tomography (DR/CT) represents a most advanced nondestructive inspection technology in aviation system, which is capable of automatically discerning interesting regions in the luggage objects with CT subsystem. In this paper, we propose a new model for active contours to detect luggage objects in the system, in order to facilitate people to identify the things in luggage. The proposed method is based on techniques of piecewise constant and piecewise smooths Chan-Vese Model, semi-implicit additive operator splitting (AOS) scheme for image segmentation. Different from traditional models, the fast implicit level set scheme (FILS) is ordinary differential equation (ODE). Characterized by no need of any pre-information of topology of images and efficient segmentation of images with complex topology, the FILS scheme is fast more than traditional level set scheme 30 times. At the same time, it performs well in image segmentation of DR images in our experiments.


Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 226
Author(s):  
Laura Antonelli ◽  
Valentina De Simone ◽  
Daniela di Serafino

We present a total-variation-regularized image segmentation model that uses local regularization parameters to take into account spatial image information. We propose some techniques for defining those parameters, based on the cartoon-texture decomposition of the given image, on the mean and median filters, and on a thresholding technique, with the aim of preventing excessive regularization in piecewise-constant or smooth regions and preserving spatial features in nonsmooth regions. Our model is obtained by modifying a well-known image segmentation model that was developed by T. Chan, S. Esedoḡlu, and M. Nikolova. We solve the modified model by an alternating minimization method using split Bregman iterations. Numerical experiments show the effectiveness of our approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yunyun Yang ◽  
Boying Wu

This paper presents a new and fast multiphase image segmentation model for color images. We propose our model by incorporating the globally convex image segmentation method and the split Bregman method into the piecewise constant multiphase Vese-Chan model for color images. We have applied our model to many synthetic and real color images. Numerical results show that our model can segment color images with multiple regions and represent boundaries with complex topologies, including triple junctions. Comparison with the Vese-Chan model demonstrates the efficiency of our model. Besides, our model does not require a priori denoising step and is robust with respect to noise.


Sign in / Sign up

Export Citation Format

Share Document