A New Image Segmentation Method Based on Improved Fast Implicit Level Set Scheme in X/γ-Ray Inspection System

2011 ◽  
Vol 103 ◽  
pp. 705-710 ◽  
Author(s):  
Yu Jie Li ◽  
Hui Min Lu ◽  
Li Feng Zhang ◽  
Shi Yuan Yang ◽  
Serikawa Seiichi

Digital X/γ-ray imaging technology has been widely used to help people deliver effective and reliable security in airports, train stations, and public buildings. Nowadays, luggage inspection system with digital radiographic/computed tomography (DR/CT) represents a most advanced nondestructive inspection technology in aviation system, which is capable of automatically discerning interesting regions in the luggage objects with CT subsystem. In this paper, we propose a new model for active contours to detect luggage objects in the system, in order to facilitate people to identify the things in luggage. The proposed method is based on techniques of piecewise constant and piecewise smooths Chan-Vese Model, semi-implicit additive operator splitting (AOS) scheme for image segmentation. Different from traditional models, the fast implicit level set scheme (FILS) is ordinary differential equation (ODE). Characterized by no need of any pre-information of topology of images and efficient segmentation of images with complex topology, the FILS scheme is fast more than traditional level set scheme 30 times. At the same time, it performs well in image segmentation of DR images in our experiments.

2011 ◽  
Vol 103 ◽  
pp. 695-699 ◽  
Author(s):  
Hui Min Lu ◽  
Serikawa Seiichi ◽  
Yu Jie Li ◽  
Li Feng Zhang ◽  
Shi Yuan Yang ◽  
...  

People living in the information age, are more and more attention to their lives. It is also said, social life is more important in present and future. The social life contains three fields. In this paper, we propose a new model for active contours to detect objects in a given medical image, in order to facilitate people to have medical treatment. The proposed method is based on techniques of piecewise constant and piecewise smooths Chan-Vese Model, semi-implicit additive operator splitting (AOS) scheme for image segmentation. Different from traditional models, our model uses the level set which are corresponding to ordinary differential equation (ODE). Our model has more improved characteristics than traditional models, such as: less sensibility of noise; unnecessary of re-initialization and high speed by the simplified ordinary differential function. Finally, we validate the proposed model by numerical synthetic and real images. The experimental results demonstrate that our model is at least two times more efficient than the widely used methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Farhan Akram ◽  
Jeong Heon Kim ◽  
Chan-Gun Lee ◽  
Kwang Nam Choi

Segmentation of regions of interest is a well-known problem in image segmentation. This paper presents a region-based image segmentation technique using active contours with signed pressure force (SPF) function. The proposed algorithm contemporaneously traces high intensity or dense regions in an image by evolving the contour inwards. In medical image modalities these high intensity or dense regions refer to tumor, masses, or dense tissues. The proposed method partitions an image into an arbitrary number of subregions and tracks down salient regions step by step. It is implemented by enforcing a new region-based SPF function in a traditional edge-based level set model. It partitions an image into subregions and then discards outer subregion and partitions inner region into two more subregions; this continues iteratively until a stopping condition is fulfilled. A Gaussian kernel is used to regularize the level set function, which not only regularizes it but also removes the need of computationally expensive reinitialization. The proposed segmentation algorithm has been applied to different images in order to demonstrate the accuracy, effectiveness, and robustness of the algorithm.


2012 ◽  
Vol 157-158 ◽  
pp. 1012-1015 ◽  
Author(s):  
Yu Miao ◽  
Wei Li Shi

Medical image segmentation can be divided into two categories: one is the region of interest (ROI) identification; the other is the description of the integrity and the extraction of interest region. The emergence of the level set method greatly promoted the development of medical image segmentation. This paper studies three different level set segmentation algorithm to achieve the effective segmentation for brain gray matter and white matter of MRI image.


2009 ◽  
Author(s):  
Kishore Mosaliganti ◽  
Benjamin Smith ◽  
Arnaud Gelas ◽  
Alexandre Gouaillard ◽  
sean megason

An Insight Toolkit (ITK) processing framework for segmentation using active contours without edges is presented in this paper. Our algorithm is based on the work of Chan and Vese [1] that uses level- sets to accomplish region segmentation in images with poor or no gradient information. The basic idea is to partion the image into two piecewise constant intensity regions. This work is in contrast to the level-set methods currently available in ITK which necessarily require gradient information. Similar to those methods, the methods presented in this paper are also made efficient using a sparse implementation strategy that solves the contour evolution PDE at the level-set boundary. The framework consists of 6 new ITK filters that inherit in succession from itk::SegmentationFilter. We include 2D/3D example code, parameter settings and show the results generated on a 2D cardiac image.


Sign in / Sign up

Export Citation Format

Share Document