scholarly journals A New and Fast Multiphase Image Segmentation Model for Color Images

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yunyun Yang ◽  
Boying Wu

This paper presents a new and fast multiphase image segmentation model for color images. We propose our model by incorporating the globally convex image segmentation method and the split Bregman method into the piecewise constant multiphase Vese-Chan model for color images. We have applied our model to many synthetic and real color images. Numerical results show that our model can segment color images with multiple regions and represent boundaries with complex topologies, including triple junctions. Comparison with the Vese-Chan model demonstrates the efficiency of our model. Besides, our model does not require a priori denoising step and is robust with respect to noise.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yunyun Yang ◽  
Boying Wu

We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results. We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force the active contour to the boundary more easily. We then apply the split Bregman method to minimize the proposed energy functional efficiently. By using a weight function that varies with location of the image, the proposed model can balance the weights between the local and global fitting terms dynamically. We have applied the proposed model to synthetic and real images with desirable results. Comparison with other models also demonstrates the accuracy and superiority of the proposed model.


2011 ◽  
Vol 103 ◽  
pp. 705-710 ◽  
Author(s):  
Yu Jie Li ◽  
Hui Min Lu ◽  
Li Feng Zhang ◽  
Shi Yuan Yang ◽  
Serikawa Seiichi

Digital X/γ-ray imaging technology has been widely used to help people deliver effective and reliable security in airports, train stations, and public buildings. Nowadays, luggage inspection system with digital radiographic/computed tomography (DR/CT) represents a most advanced nondestructive inspection technology in aviation system, which is capable of automatically discerning interesting regions in the luggage objects with CT subsystem. In this paper, we propose a new model for active contours to detect luggage objects in the system, in order to facilitate people to identify the things in luggage. The proposed method is based on techniques of piecewise constant and piecewise smooths Chan-Vese Model, semi-implicit additive operator splitting (AOS) scheme for image segmentation. Different from traditional models, the fast implicit level set scheme (FILS) is ordinary differential equation (ODE). Characterized by no need of any pre-information of topology of images and efficient segmentation of images with complex topology, the FILS scheme is fast more than traditional level set scheme 30 times. At the same time, it performs well in image segmentation of DR images in our experiments.


2019 ◽  
Vol 57 ◽  
pp. 50-67 ◽  
Author(s):  
Yunyun Yang ◽  
Dongcai Tian ◽  
Wenjing Jia ◽  
Xiu Shu ◽  
Boying Wu

Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 226
Author(s):  
Laura Antonelli ◽  
Valentina De Simone ◽  
Daniela di Serafino

We present a total-variation-regularized image segmentation model that uses local regularization parameters to take into account spatial image information. We propose some techniques for defining those parameters, based on the cartoon-texture decomposition of the given image, on the mean and median filters, and on a thresholding technique, with the aim of preventing excessive regularization in piecewise-constant or smooth regions and preserving spatial features in nonsmooth regions. Our model is obtained by modifying a well-known image segmentation model that was developed by T. Chan, S. Esedoḡlu, and M. Nikolova. We solve the modified model by an alternating minimization method using split Bregman iterations. Numerical experiments show the effectiveness of our approach.


2020 ◽  
Vol 14 ◽  
Author(s):  
Basu Dev Shivahare ◽  
S.K. Gupta

Abstract: Segmenting an image into multiple regions is a pre-processing phase of computer vision. For the same, determining an optimal set of thresholds is challenging problem. This paper introduces a novel multi-level thresholding based image segmentation method. The presented method uses a novel variant of whale optimization algorithm to determine the optimal thresholds. For experimental validation of the proposed variant, twenty-three benchmark functions are considered. To analysis the efficacy of new multi-level image segmentation method, images from Berkeley Segmentation Dataset and Benchmark (BSDS300) have been considered and tested against recent multi-level image segmentation methods. The segmentation results are validated in terms of subjective and objective evaluation. Experiments arm that the presented method is efficient and competitive than the existing multi-level image segmentation methods


Author(s):  
Tomasz Rymarczyk

In this work, there were implemented methods to analyze and segmentation medical images by using topological, statistical algorithms and artificial intelligence techniques. The solution shows the architecture of the system collecting and analyzing data. There was tried to develop an algorithm for level set method (LSM) applied to piecewise constant image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. The image segmentation refers to the process of partitioning a digital image into multiple regions. There is typically used to locate objects and boundaries in images. There was also shown an algorithm for analyzing medical images using a neural network MLP.


Sign in / Sign up

Export Citation Format

Share Document