Determination of Platinum and Rhodium by Stripping Voltammetry

2021 ◽  
Vol 76 (12) ◽  
pp. 1435-1437
Author(s):  
A. V. Egoshina ◽  
N. A. Kolpakova
2006 ◽  
Vol 71 (11-12) ◽  
pp. 1571-1587 ◽  
Author(s):  
Karel Čížek ◽  
Jiří Barek ◽  
Jiří Zima

The polarographic behavior of 3-nitrofluoranthene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV), both at a hanging mercury drop electrode. Optimum conditions have been found for its determination by the given methods in the concentration ranges of 1 × 10-6-1 × 10-4 mol l-1 (DCTP), 1 × 10-7-1 × 10-4 mol l-1 (DPP), 1 × 10-8-1 × 10-6 mol l-1 (DPV) and 1 × 10-9-1 × 10-7 mol l-1 (AdSV), respectively. Practical applicability of these techniques was demonstrated on the determination of 3-nitrofluoranthene in drinking and river water after its preliminary separation and preconcentration using liquid-liquid and solid phase extraction with the limits of determination 4 × 10-10 mol l-1 (drinking water) and 2 × 10-9 mol l-1 (river water).


2009 ◽  
Vol 74 (4) ◽  
pp. 599-610 ◽  
Author(s):  
Mohammad Bagher Gholivand ◽  
Alireza Pourhossein ◽  
Mohsen Shahlaei

A sensitive and selective procedure is presented for the voltammetric determination of lead. The procedure involves an adsorptive accumulation of lead L-3-(3,4-dihydroxyphenyl)alanine (LDOPA) on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of reduction current of an adsorbed complex at –0.15 V (vs Ag|AgCl). Optimum conditions for lead analysis include pH 8.5, 80 μM LDOPA and accumulation potential –0.15 V (vs Ag|AgCl). The peak currents are proportional to the lead concentration 1–300 nmol l–1 with a detection limit of 0.6 nmol l–1 and accumulation time 60 s. The method was used for the determination of lead in blood, dry tea and also in waters.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1768
Author(s):  
Miroslav Rievaj ◽  
Eva Culková ◽  
Damiána Šandorová ◽  
Zuzana Lukáčová-Chomisteková ◽  
Renata Bellová ◽  
...  

This short review deals with the properties and significance of the determination of selenium, which is in trace amounts an essential element for animals and humans, but toxic at high concentrations. It may cause oxidative stress in cells, which leads to the chronic disease called selenosis. Several analytical techniques have been developed for its detection, but electroanalytical methods are advantageous due to simple sample preparation, speed of analysis and high sensitivity of measurements, especially in the case of stripping voltammetry very low detection limits even in picomoles per liter can be reached. A variety of working electrodes based on mercury, carbon, silver, platinum and gold materials were applied to the analysis of selenium in various samples. Only selenium in oxidation state + IV is electroactive therefore the most of voltammetric determinations are devoted to it. However, it is possible to detect also other forms of selenium by indirect electrochemistry approach.


Author(s):  
Larissa Pinto Silva ◽  
Náira Da Silva Campos ◽  
Thalles Pedrosa Lisboa ◽  
Lucas Vinícius de Faria ◽  
Maria Auxiliadora Costa Matos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document